Python base.Model() Examples
The following are 5
code examples of base.Model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
base
, or try the search function
.
Example #1
Source File: model.py From piqa with Apache License 2.0 | 5 votes |
def __init__(self, char_vocab_size, glove_vocab_size, word_vocab_size, hidden_size, embed_size, dropout, num_heads, max_ans_len=7, elmo=False, max_pool=False, num_layers=1, glove_cpu=False, metric='ip', **kwargs): super(Model, self).__init__() self.embedding = Embedding(char_vocab_size, glove_vocab_size, word_vocab_size, embed_size, dropout, elmo=elmo, glove_cpu=glove_cpu) self.context_embedding = self.embedding self.question_embedding = self.embedding word_size = self.embedding.output_size context_input_size = word_size question_input_size = word_size self.context_start = ContextBoundary(context_input_size, hidden_size, dropout, num_heads, num_layers=num_layers) self.context_end = ContextBoundary(context_input_size, hidden_size, dropout, num_heads, num_layers=num_layers) self.question_start = QuestionBoundary(question_input_size, hidden_size, dropout, num_heads, max_pool=max_pool) self.question_end = QuestionBoundary(question_input_size, hidden_size, dropout, num_heads, max_pool=max_pool) self.softmax = nn.Softmax(dim=1) self.max_ans_len = max_ans_len self.linear = nn.Linear(word_size, 1) self.metric = metric
Example #2
Source File: nvdm.py From variational-text-tensorflow with MIT License | 5 votes |
def __init__(self, sess, reader, dataset="ptb", decay_rate=0.96, decay_step=10000, embed_dim=500, h_dim=50, learning_rate=0.001, max_iter=450000, checkpoint_dir="checkpoint"): """Initialize Neural Varational Document Model. params: sess: TensorFlow Session object. reader: TextReader object for training and test. dataset: The name of dataset to use. h_dim: The dimension of document representations (h). [50, 200] """ self.sess = sess self.reader = reader self.h_dim = h_dim self.embed_dim = embed_dim self.max_iter = max_iter self.decay_rate = decay_rate self.decay_step = decay_step self.checkpoint_dir = checkpoint_dir self.step = tf.Variable(0, trainable=False) self.lr = tf.train.exponential_decay( learning_rate, self.step, 10000, decay_rate, staircase=True, name="lr") _ = tf.scalar_summary("learning rate", self.lr) self.dataset = dataset self._attrs = ["h_dim", "embed_dim", "max_iter", "dataset", "learning_rate", "decay_rate", "decay_step"] self.build_model()
Example #3
Source File: nasm.py From variational-text-tensorflow with MIT License | 5 votes |
def __init__(self, sess, reader, dataset="ptb", batch_size=20, num_steps=3, embed_dim=500, h_dim=50, learning_rate=0.01, epoch=50, checkpoint_dir="checkpoint"): """Initialize Neural Varational Document Model. params: sess: TensorFlow Session object. reader: TextReader object for training and test. dataset: The name of dataset to use. h_dim: The dimension of document representations (h). [50, 200] """ self.sess = sess self.reader = reader self.h_dim = h_dim self.embed_dim = embed_dim self.epoch = epoch self.batch_size = batch_size self.learning_rate = learning_rate self.checkpoint_dir = checkpoint_dir self.dataset="ptb" self._attrs=["batch_size", "num_steps", "embed_dim", "h_dim", "learning_rate"] raise Exception(" [!] Working in progress") self.build_model()
Example #4
Source File: main.py From piqa with Apache License 2.0 | 4 votes |
def test(args): device = torch.device('cuda' if args.cuda else 'cpu') pprint(args.__dict__) interface = FileInterface(**args.__dict__) # use cache for metadata if args.cache: out = interface.cache(preprocess, args) processor = out['processor'] processed_metadata = out['processed_metadata'] else: processor = Processor(**args.__dict__) metadata = interface.load_metadata() processed_metadata = processor.process_metadata(metadata) model = Model(**args.__dict__).to(device) model.init(processed_metadata) interface.bind(processor, model) interface.load(args.iteration, session=args.load_dir) test_examples = interface.load_test() test_dataset = tuple(processor.preprocess(example) for example in test_examples) test_sampler = Sampler(test_dataset, 'test', **args.__dict__) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, sampler=test_sampler, collate_fn=processor.collate) print('Inferencing') with torch.no_grad(): model.eval() pred = {} for batch_idx, (test_batch, _) in enumerate(zip(test_loader, range(args.eval_steps))): test_batch = {key: val.to(device) for key, val in test_batch.items()} model_output = model(**test_batch) results = processor.postprocess_batch(test_dataset, test_batch, model_output) if batch_idx % args.dump_period == 0: dump = processor.get_dump(test_dataset, test_batch, model_output, results) interface.dump(batch_idx, dump) for result in results: pred[result['id']] = result['pred'] print('[%d/%d]' % (batch_idx + 1, len(test_loader))) interface.pred(pred)
Example #5
Source File: main.py From piqa with Apache License 2.0 | 4 votes |
def embed(args): device = torch.device('cuda' if args.cuda else 'cpu') pprint(args.__dict__) interface = FileInterface(**args.__dict__) # use cache for metadata if args.cache: out = interface.cache(preprocess, args) processor = out['processor'] processed_metadata = out['processed_metadata'] else: processor = Processor(**args.__dict__) metadata = interface.load_metadata() processed_metadata = processor.process_metadata(metadata) model = Model(**args.__dict__).to(device) model.init(processed_metadata) interface.bind(processor, model) interface.load(args.iteration, session=args.load_dir) test_examples = interface.load_test() test_dataset = tuple(processor.preprocess(example) for example in test_examples) test_sampler = Sampler(test_dataset, 'test', **args.__dict__) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, sampler=test_sampler, collate_fn=processor.collate) print('Saving embeddings') with torch.no_grad(): model.eval() for batch_idx, (test_batch, _) in enumerate(zip(test_loader, range(args.eval_steps))): test_batch = {key: val.to(device) for key, val in test_batch.items()} if args.mode == 'embed' or args.mode == 'embed_context': context_output = model.get_context(**test_batch) context_results = processor.postprocess_context_batch(test_dataset, test_batch, context_output) for id_, phrases, matrix, metadata in context_results: if not args.metadata: metadata = None interface.context_emb(id_, phrases, matrix, metadata=metadata, emb_type=args.emb_type) if args.mode == 'embed' or args.mode == 'embed_question': question_output = model.get_question(**test_batch) question_results = processor.postprocess_question_batch(test_dataset, test_batch, question_output) for id_, emb in question_results: interface.question_emb(id_, emb, emb_type=args.emb_type) print('[%d/%d]' % (batch_idx + 1, len(test_loader))) if args.archive: print('Archiving') interface.archive()