Python keras.regularizers.l1() Examples
The following are 30
code examples of keras.regularizers.l1().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.regularizers
, or try the search function
.
Example #1
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #2
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #3
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #4
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #5
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #6
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #7
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #8
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #9
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #10
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #11
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #12
Source File: feedforward.py From keras-anomaly-detection with MIT License | 6 votes |
def create_model(self, input_dim): encoding_dim = 14 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(input_layer) encoder = Dense(encoding_dim // 2, activation="relu")(encoder) decoder = Dense(encoding_dim // 2, activation='tanh')(encoder) decoder = Dense(input_dim, activation='relu')(decoder) model = Model(inputs=input_layer, outputs=decoder) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) return model
Example #13
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_regularizer(layer_class): layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), kernel_regularizer=regularizers.l1(0.01), recurrent_regularizer=regularizers.l1(0.01), bias_regularizer='l2') layer.build((None, None, embedding_dim)) assert len(layer.losses) == 3 assert len(layer.cell.losses) == 3 layer = layer_class(units, return_sequences=False, weights=None, input_shape=(timesteps, embedding_dim), activity_regularizer='l2') assert layer.activity_regularizer x = K.variable(np.ones((num_samples, timesteps, embedding_dim))) layer(x) assert len(layer.cell.get_losses_for(x)) == 0 assert len(layer.get_losses_for(x)) == 1
Example #14
Source File: layers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxout_dense(): layer_test(legacy_layers.MaxoutDense, kwargs={'output_dim': 3}, input_shape=(3, 2)) layer_test(legacy_layers.MaxoutDense, kwargs={'output_dim': 3, 'W_regularizer': regularizers.l2(0.01), 'b_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.l2(0.01), 'W_constraint': constraints.MaxNorm(1), 'b_constraint': constraints.MaxNorm(1)}, input_shape=(3, 2))
Example #15
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_dense(): layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(None, None, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 5, 2)) layer_test(layers.Dense, kwargs={'units': 3, 'kernel_regularizer': regularizers.l2(0.01), 'bias_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.L1L2(l1=0.01, l2=0.01), 'kernel_constraint': constraints.MaxNorm(1), 'bias_constraint': constraints.max_norm(1)}, input_shape=(3, 2)) layer = layers.Dense(3, kernel_regularizer=regularizers.l1(0.01), bias_regularizer='l1') layer.build((None, 4)) assert len(layer.losses) == 2
Example #16
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_from_config(layer_class): stateful_flags = (False, True) for stateful in stateful_flags: l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config()
Example #17
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_kernel_regularization(): x_train, y_train = get_data() for reg in [regularizers.l1(), regularizers.l2(), regularizers.l1_l2()]: model = create_model(kernel_regularizer=reg) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.train_on_batch(x_train, y_train)
Example #18
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_from_config(layer_class): stateful_flags = (False, True) for stateful in stateful_flags: l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config()
Example #19
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_dense(): layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(None, None, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 5, 2)) layer_test(layers.Dense, kwargs={'units': 3, 'kernel_regularizer': regularizers.l2(0.01), 'bias_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.L1L2(l1=0.01, l2=0.01), 'kernel_constraint': constraints.MaxNorm(1), 'bias_constraint': constraints.max_norm(1)}, input_shape=(3, 2)) layer = layers.Dense(3, kernel_regularizer=regularizers.l1(0.01), bias_regularizer='l1') layer.build((None, 4)) assert len(layer.losses) == 2
Example #20
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_activity_regularization(): x_train, y_train = get_data() for reg in [regularizers.l1(), regularizers.l2()]: model = create_model(activity_regularizer=reg) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.train_on_batch(x_train, y_train)
Example #21
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_regularization_shared_layer_in_different_models(): shared_dense = Dense(num_classes, kernel_regularizer=regularizers.l1(), activity_regularizer=regularizers.l1()) models = [] for _ in range(2): input_tensor = Input(shape=(data_dim,)) unshared_dense = Dense(num_classes, kernel_regularizer=regularizers.l1()) out = unshared_dense(shared_dense(input_tensor)) models.append(Model(input_tensor, out)) model = create_multi_input_model_from(*models) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 8
Example #22
Source File: layers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_highway(): layer_test(legacy_layers.Highway, kwargs={}, input_shape=(3, 2)) layer_test(legacy_layers.Highway, kwargs={'W_regularizer': regularizers.l2(0.01), 'b_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.l2(0.01), 'W_constraint': constraints.MaxNorm(1), 'b_constraint': constraints.MaxNorm(1)}, input_shape=(3, 2))
Example #23
Source File: layers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxout_dense(): layer_test(legacy_layers.MaxoutDense, kwargs={'output_dim': 3}, input_shape=(3, 2)) layer_test(legacy_layers.MaxoutDense, kwargs={'output_dim': 3, 'W_regularizer': regularizers.l2(0.01), 'b_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.l2(0.01), 'W_constraint': constraints.MaxNorm(1), 'b_constraint': constraints.MaxNorm(1)}, input_shape=(3, 2))
Example #24
Source File: layers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_highway(): layer_test(legacy_layers.Highway, kwargs={}, input_shape=(3, 2)) layer_test(legacy_layers.Highway, kwargs={'W_regularizer': regularizers.l2(0.01), 'b_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.l2(0.01), 'W_constraint': constraints.MaxNorm(1), 'b_constraint': constraints.MaxNorm(1)}, input_shape=(3, 2))
Example #25
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_regularization_shared_layer_in_different_models(): shared_dense = Dense(num_classes, kernel_regularizer=regularizers.l1(), activity_regularizer=regularizers.l1()) models = [] for _ in range(2): input_tensor = Input(shape=(data_dim,)) unshared_dense = Dense(num_classes, kernel_regularizer=regularizers.l1()) out = unshared_dense(shared_dense(input_tensor)) models.append(Model(input_tensor, out)) model = create_multi_input_model_from(*models) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 8
Example #26
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_regularization_shared_layer(): dense_layer = Dense(num_classes, kernel_regularizer=regularizers.l1(), activity_regularizer=regularizers.l1()) model = create_multi_input_model_from(dense_layer, dense_layer) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 6
Example #27
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_activity_regularization(): x_train, y_train = get_data() for reg in [regularizers.l1(), regularizers.l2()]: model = create_model(activity_regularizer=reg) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.train_on_batch(x_train, y_train)
Example #28
Source File: regularizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_kernel_regularization(): x_train, y_train = get_data() for reg in [regularizers.l1(), regularizers.l2(), regularizers.l1_l2()]: model = create_model(kernel_regularizer=reg) model.compile(loss='categorical_crossentropy', optimizer='sgd') assert len(model.losses) == 1 model.train_on_batch(x_train, y_train)
Example #29
Source File: recurrent_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_from_config(layer_class): stateful_flags = (False, True) for stateful in stateful_flags: l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config()
Example #30
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_dense(): layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(None, None, 2)) layer_test(layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 5, 2)) layer_test(layers.Dense, kwargs={'units': 3, 'kernel_regularizer': regularizers.l2(0.01), 'bias_regularizer': regularizers.l1(0.01), 'activity_regularizer': regularizers.L1L2(l1=0.01, l2=0.01), 'kernel_constraint': constraints.MaxNorm(1), 'bias_constraint': constraints.max_norm(1)}, input_shape=(3, 2)) layer = layers.Dense(3, kernel_regularizer=regularizers.l1(0.01), bias_regularizer='l1') layer.build((None, 4)) assert len(layer.losses) == 2