Python PIL.ImageColor.getrgb() Examples
The following are 30
code examples of PIL.ImageColor.getrgb().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL.ImageColor
, or try the search function
.
Example #1
Source File: test_imagedraw.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_floodfill_thresh(self): # floodfill() is experimental # Arrange im = Image.new("RGB", (W, H)) draw = ImageDraw.Draw(im) draw.rectangle(BBOX2, outline="darkgreen", fill="green") centre_point = (int(W/2), int(H/2)) # Act ImageDraw.floodfill( im, centre_point, ImageColor.getrgb("red"), thresh=30) # Assert self.assert_image_equal( im, Image.open("Tests/images/imagedraw_floodfill2.png"))
Example #2
Source File: identicon.py From Hands-On-Blockchain-for-Python-Developers with MIT License | 6 votes |
def decode(self, code): # decode the code middleType = self.MIDDLE_PATCH_SET[code & 0x03] middleInvert= (code >> 2) & 0x01 cornerType = (code >> 3) & 0x0F cornerInvert= (code >> 7) & 0x01 cornerTurn = (code >> 8) & 0x03 sideType = (code >> 10) & 0x0F sideInvert = (code >> 14) & 0x01 sideTurn = (code >> 15) & 0x03 blue = (code >> 16) & 0x1F green = (code >> 21) & 0x1F red = (code >> 27) & 0x1F foreColor = (red << 3, green << 3, blue << 3) return (middleType, middleInvert, 0),\ (cornerType, cornerInvert, cornerTurn),\ (sideType, sideInvert, sideTurn),\ foreColor, ImageColor.getrgb('white')
Example #3
Source File: insects_brains_db.py From BrainRender with MIT License | 6 votes |
def get_region_color(self, regions): """ Gets the RGB color of a brain region from the atlas. :param regions: list of regions acronyms. """ if not isinstance(regions, list): if not self._check_valid_region_arg(regions): return None return ImageColor.getrgb(self.structures.loc[self.structures.acronym == regions].color.values[0]) else: colors = [] for region in regions: if not self._check_valid_region_arg(region): return None colors.append(ImageColor.getrgb(self.structures.loc[self.structures.acronym == region].color.values[0])) return colors
Example #4
Source File: test_imagedraw.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_floodfill_border(self): # floodfill() is experimental # Arrange im = Image.new("RGB", (W, H)) draw = ImageDraw.Draw(im) draw.rectangle(BBOX2, outline="yellow", fill="green") centre_point = (int(W/2), int(H/2)) # Act ImageDraw.floodfill( im, centre_point, ImageColor.getrgb("red"), border=ImageColor.getrgb("black")) # Assert self.assert_image_equal( im, Image.open("Tests/images/imagedraw_floodfill2.png"))
Example #5
Source File: key.py From kle_render with MIT License | 6 votes |
def open_base_img(full_profile, res, base_color, color): # get base image according to profile and perceptual gray of key color base_num = str([0xE0, 0xB0, 0x80, 0x50, 0x20].index(base_color) + 1) # open image and convert to Lab with Image.open('images/{0}_{1}{2}.png'.format(*full_profile, base_num)) as img: key_img = img.resize((int(s * res / 200) for s in img.size), resample=Image.BILINEAR).convert('RGBA') if full_profile[1] in ('ISO', 'BIGENTER'): alpha = key_img.split()[-1] l, a, b = ImageCms.applyTransform(key_img, rgb2lab_transform).split() # convert key color to Lab # a and b should be scaled by 128/100, but desaturation looks more natural rgb_color = color_objects.sRGBColor(*ImageColor.getrgb(color), is_upscaled=True) lab_color = color_conversions.convert_color(rgb_color, color_objects.LabColor) l1, a1, b1 = lab_color.get_value_tuple() l1, a1, b1 = int(l1 * 256 / 100), int(a1 + 128), int(b1 + 128) # change Lab of base image to match that of key color l = ImageMath.eval('convert(l + l1 - l_avg, "L")', l=l, l1=l1, l_avg=base_color) a = ImageMath.eval('convert(a + a1 - a, "L")', a=a, a1=a1) b = ImageMath.eval('convert(b + b1 - b, "L")', b=b, b1=b1) key_img = ImageCms.applyTransform(Image.merge('LAB', (l, a, b)), lab2rgb_transform).convert('RGBA') if full_profile[1] in ('ISO', 'BIGENTER'): key_img.putalpha(alpha) return key_img
Example #6
Source File: key.py From kle_render with MIT License | 6 votes |
def get_base_color(self): # calculate perceptual gray of key color color = ImageColor.getrgb(self.color) bright = 0.3 * color[0] + 0.59 * color[1] + 0.11 * color[2] # get corresponding base image's average color if (bright > 0xB0): return 0xE0 # 224 elif (bright > 0x80): return 0xB0 # 176 elif (bright > 0x50): return 0x80 # 128 elif (bright > 0x20): return 0x50 # 80 else: return 0x20 # 32
Example #7
Source File: visualization_utils.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #8
Source File: utils.py From nider with MIT License | 5 votes |
def color_to_rgb(color): try: return rgb(*ImageColor.getrgb(color)) except AttributeError as e: # assume that color is already an rgb tuple return rgb(*color)
Example #9
Source File: identicon.py From Mash-Cogs with GNU General Public License v3.0 | 5 votes |
def decode(self, code): # decode the code middleType = self.MIDDLE_PATCH_SET[code & 0x03] middleInvert = (code >> 2) & 0x01 cornerType = (code >> 3) & 0x0F cornerInvert= (code >> 7) & 0x01 cornerTurn = (code >> 8) & 0x03 sideType = (code >> 10) & 0x0F sideInvert = (code >> 14) & 0x01 sideTurn = (code >> 15) & 0x03 blue = (code >> 16) & 0x1F green = (code >> 21) & 0x1F red = (code >> 27) & 0x1F def seeded_pigment(pigment): random.seed(pigment) pigment = random.randint(0, 255) return pigment foreColor = (red << 3, green << 3, blue << 3) #print (foreColor) backColor = (seeded_pigment(red), seeded_pigment(green), seeded_pigment(blue)) #print (backColor) return (middleType, middleInvert, 0),\ (cornerType, cornerInvert, cornerTurn),\ (sideType, sideInvert, sideTurn),\ foreColor, backColor#ImageColor.getrgb('white')
Example #10
Source File: vis.py From Detectron-PYTORCH with Apache License 2.0 | 5 votes |
def get_color(indx, cls_num=-1): return ImageColor.getrgb(STANDARD_COLORS[indx])[::-1] # BGR
Example #11
Source File: visualization_utils.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #12
Source File: visualization_utils.py From models with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #13
Source File: visualization_utils.py From AniSeg with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #14
Source File: visualization_utils.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #15
Source File: visualization.py From rpi-deep-pantilt with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #16
Source File: visualization_utils.py From hands-detection with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #17
Source File: create_recode.py From fansfood with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_image_recode(number_a, number_b): """ 这段代码是搬运自 https://blog.csdn.net/jinixin/article/details/79248842 目前没有接触过 pillow 库,自能先借用一下 """ font_color = '#FFFFFF' image = Image.new(mode='RGBA', size=(52, 27)) # RGBA模式下没有color参数便是透明图片 draw_table = ImageDraw.Draw(im=image) text = "{} + {}".format(number_a, number_b) draw_table.text(xy=(0, 0), text=text, fill=font_color, font=ImageFont.truetype('./msyh.ttc', 20)) f_color_channel = ImageColor.getrgb(font_color) r, g, b, a = image.split() # 将图像分成三个单通道图像 r = r.point(lambda x: f_color_channel[0]) # 迭代处理R通道图像的所有像素,将它们设成字体颜色的R值 g = g.point(lambda x: f_color_channel[1]) b = b.point(lambda x: f_color_channel[2]) image = Image.merge('RGBA', (r, g, b, a)) # 合并多个通道图像成一个新图像 # 生成 SQL 语句 # 生成随机图片名称 name_str = 'ABCDEFGHIJKLMNOPQRETUVWXYZabcedfghijklmnopqrstuvwxyz0123456789_-' name = "".join(random.sample(name_str, 10)) sql_info = "INSERT INTO recode_image VALUES " \ "(<>, '{name}', {a}, {b}, 'recode_image/{name}.png'," \ " '2019-05-01 16:58:14.840294');\n".format(name=name, a=number_a, b=number_b) path = os.path.join(BASE_DIR, "media", "recode_image", "{}.png".format(name)) image.save(path) image.close() return sql_info
Example #18
Source File: visualization_utils.py From models with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #19
Source File: colors.py From BotHub with Apache License 2.0 | 5 votes |
def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) message_id = event.message.id if event.reply_to_msg_id: message_id = event.reply_to_msg_id if input_str.startswith("#"): try: usercolor = ImageColor.getrgb(input_str) except Exception as e: await event.edit(str(e)) return False else: im = Image.new(mode="RGB", size=(1280, 720), color=usercolor) im.save("BotHub.png", "PNG") input_str = input_str.replace("#", "#COLOR_") await borg.send_file( event.chat_id, "UniBorg.png", force_document=False, caption=input_str, reply_to=message_id ) os.remove("BotHub.png") await event.delete() else: await event.edit("Syntax: `.color <color_code>`")
Example #20
Source File: visualization_utils.py From aster with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #21
Source File: visualization_utils.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #22
Source File: palette.py From label-maker with MIT License | 5 votes |
def class_color(c): """Return 3-element tuple containing rgb values for a given class""" if c == 0: return (0, 0, 0) # background class return ImageColor.getrgb(colors[c % len(colors)])
Example #23
Source File: visualization_utils.py From TwinGAN with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #24
Source File: visualization_utils.py From moveo_ros with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #25
Source File: celegans.py From BrainRender with MIT License | 5 votes |
def get_neuron_color(self, neuron, colorby='type'): """ Get a neuron's RGB color. Colors can be assigned based on different criteria like the neuron's type or by individual neuron etc... :param neuron: str, nueron name :param colorby: str, metadata attribute to use for coloring :returns: rgb values of color """ try: # make this work if called by a Scene class cs = self.atlas except: cs = self allowed = ['neuron', 'individual', 'ind', 'pair', 'class', 'type'] if colorby not in allowed: raise ValueError(f"color by key should be one of {allowed} not {colorby}") if colorby == 'type': color = cs.neurons_metadata.loc[cs.neurons_metadata.neuron == neuron]['type_color'].values[0] color = ImageColor.getrgb(color) elif colorby == 'individual' or colorby == 'ind' or colorby == 'neuron': color = get_random_colors() else: raise NotImplementedError return color
Example #26
Source File: visualization_utils.py From tf2-eager-yolo3 with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #27
Source File: visualization_utils_color.py From tensorflow-face-detection with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a float numpy array of shape (img_height, img_height) with values between 0 and 1 color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.7) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.float32: raise ValueError('`mask` not of type np.float32') if np.any(np.logical_or(mask > 1.0, mask < 0.0)): raise ValueError('`mask` elements should be in [0, 1]') rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #28
Source File: visualize.py From YOLOV3 with MIT License | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #29
Source File: visualization_utils.py From container_detection with GNU General Public License v3.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))
Example #30
Source File: visualization_utils.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB')))