Python keras.constraints.maxnorm() Examples
The following are 13
code examples of keras.constraints.maxnorm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.constraints
, or try the search function
.
Example #1
Source File: test_constraints.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_maxnorm(self): from keras.constraints import maxnorm for m in self.some_values: norm_instance = maxnorm(m) normed = norm_instance(self.example_array) assert (np.all(normed.eval() < m)) # a more explicit example norm_instance = maxnorm(2.0) x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T x_normed_target = np.array([[0, 0, 0], [1.0, 0, 0], [2.0, 0, 0], [2./np.sqrt(3), 2./np.sqrt(3), 2./np.sqrt(3)]]).T x_normed_actual = norm_instance(x).eval() assert_allclose(x_normed_actual, x_normed_target)
Example #2
Source File: test7.py From deep with Apache License 2.0 | 5 votes |
def create_model(neurons=1): # create model model = Sequential() model.add(Dense(neurons, input_dim=8, init='uniform', activation='softplus', W_constraint=maxnorm(4))) model.add(Dropout(0.1)) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model # fix random seed for reproducibility
Example #3
Source File: test6.py From deep with Apache License 2.0 | 5 votes |
def create_model(dropout_rate=0.0, weight_constraint=0): # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='softplus', W_constraint=maxnorm(weight_constraint))) model.add(Dropout(dropout_rate)) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model # fix random seed for reproducibility
Example #4
Source File: BuildModel.py From RMDL with GNU General Public License v3.0 | 5 votes |
def Build_Model_CNN_Image(shape, nclasses, sparse_categorical, min_hidden_layer_cnn, max_hidden_layer_cnn, min_nodes_cnn, max_nodes_cnn, random_optimizor, dropout): """"" def Image_model_CNN(num_classes,shape): num_classes is number of classes, shape is (w,h,p) """"" model = Sequential() values = list(range(min_nodes_cnn,max_nodes_cnn)) Layers = list(range(min_hidden_layer_cnn, max_hidden_layer_cnn)) Layer = random.choice(Layers) Filter = random.choice(values) model.add(Conv2D(Filter, (3, 3), padding='same', input_shape=shape)) model.add(Activation('relu')) model.add(Conv2D(Filter, (3, 3))) model.add(Activation('relu')) for i in range(0,Layer): Filter = random.choice(values) model.add(Conv2D(Filter, (3, 3),padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(dropout)) model.add(Dense(nclasses,activation='softmax',kernel_constraint=maxnorm(3))) model_tmp = model if sparse_categorical: model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizors(random_optimizor), metrics=['accuracy']) else: model.compile(loss='categorical_crossentropy', optimizer=optimizors(random_optimizor), metrics=['accuracy']) return model,model_tmp
Example #5
Source File: architectures.py From DeepIV with MIT License | 5 votes |
def feed_forward_net(input, output, hidden_layers=[64, 64], activations='relu', dropout_rate=0., l2=0., constrain_norm=False): ''' Helper function for building a Keras feed forward network. input: Keras Input object appropriate for the data. e.g. input=Input(shape=(20,)) output: Function representing final layer for the network that maps from the last hidden layer to output. e.g. if output = Dense(10, activation='softmax') if we're doing 10 class classification or output = Dense(1, activation='linear') if we're doing regression. ''' state = input if isinstance(activations, str): activations = [activations] * len(hidden_layers) for h, a in zip(hidden_layers, activations): if l2 > 0.: w_reg = keras.regularizers.l2(l2) else: w_reg = None const = maxnorm(2) if constrain_norm else None state = Dense(h, activation=a, kernel_regularizer=w_reg, kernel_constraint=const)(state) if dropout_rate > 0.: state = Dropout(dropout_rate)(state) return output(state)
Example #6
Source File: architectures.py From DeepIV with MIT License | 5 votes |
def convnet(input, output, dropout_rate=0., input_shape=(1, 28, 28), batch_size=100, l2_rate=0.001, nb_epoch=12, img_rows=28, img_cols=28, nb_filters=64, pool_size=(2, 2), kernel_size=(3, 3), activations='relu', constrain_norm=False): ''' Helper function for building a Keras convolutional network. input: Keras Input object appropriate for the data. e.g. input=Input(shape=(20,)) output: Function representing final layer for the network that maps from the last hidden layer to output. e.g. if output = Dense(10, activation='softmax') if we're doing 10 class classification or output = Dense(1, activation='linear') if we're doing regression. ''' const = maxnorm(2) if constrain_norm else None state = Convolution2D(nb_filters, kernel_size, padding='valid', input_shape=input_shape, activation=activations, kernel_regularizer=l2(l2_rate), kernel_constraint=const)(input) state = Convolution2D(nb_filters, kernel_size, activation=activations, kernel_regularizer=l2(l2_rate), kernel_constraint=const)(state) state = MaxPooling2D(pool_size=pool_size)(state) state = Flatten()(state) if dropout_rate > 0.: state = Dropout(dropout_rate)(state) state = Dense(128, activation=activations, kernel_regularizer=l2(l2_rate), kernel_constraint=const)(state) if dropout_rate > 0.: state = Dropout(dropout_rate)(state) return output(state)
Example #7
Source File: sst1_cnn_rnn.py From crnn with MIT License | 4 votes |
def build_model(): main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input') embedding = Embedding(max_features, embedding_dims, weights=[np.matrix(W)], input_length=maxlen, name='embedding')(main_input) embedding = Dropout(0.50)(embedding) conv4 = Convolution1D(nb_filter=nb_filter, filter_length=4, border_mode='valid', activation='relu', subsample_length=1, name='conv4')(embedding) maxConv4 = MaxPooling1D(pool_length=2, name='maxConv4')(conv4) conv5 = Convolution1D(nb_filter=nb_filter, filter_length=5, border_mode='valid', activation='relu', subsample_length=1, name='conv5')(embedding) maxConv5 = MaxPooling1D(pool_length=2, name='maxConv5')(conv5) x = merge([maxConv4, maxConv5], mode='concat') x = Dropout(0.15)(x) x = RNN(rnn_output_size)(x) x = Dense(hidden_dims, activation='relu', init='he_normal', W_constraint = maxnorm(3), b_constraint=maxnorm(3), name='mlp')(x) x = Dropout(0.10, name='drop')(x) output = Dense(nb_classes, init='he_normal', activation='softmax', name='output')(x) model = Model(input=main_input, output=output) model.compile(loss={'output':'categorical_crossentropy'}, optimizer=Adadelta(lr=0.95, epsilon=1e-06), metrics=["accuracy"]) return model
Example #8
Source File: sst2_cnn_rnn_kera1.py From crnn with MIT License | 4 votes |
def build_model(): main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input') embedding = Embedding(max_features, embedding_dims, weights=[np.matrix(W)], input_length=maxlen, name='embedding')(main_input) embedding = Dropout(0.50)(embedding) conv4 = Convolution1D(nb_filter=nb_filter, filter_length=4, border_mode='valid', activation='relu', subsample_length=1, name='conv4')(embedding) maxConv4 = MaxPooling1D(pool_length=2, name='maxConv4')(conv4) conv5 = Convolution1D(nb_filter=nb_filter, filter_length=5, border_mode='valid', activation='relu', subsample_length=1, name='conv5')(embedding) maxConv5 = MaxPooling1D(pool_length=2, name='maxConv5')(conv5) x = merge([maxConv4, maxConv5], mode='concat') x = Dropout(0.15)(x) x = RNN(rnn_output_size)(x) x = Dense(hidden_dims, activation='relu', init='he_normal', W_constraint = maxnorm(3), b_constraint=maxnorm(3), name='mlp')(x) x = Dropout(0.10, name='drop')(x) output = Dense(1, init='he_normal', activation='sigmoid', name='output')(x) model = Model(input=main_input, output=output) model.compile(loss={'output':'binary_crossentropy'}, optimizer=Adadelta(lr=0.95, epsilon=1e-06), metrics=["accuracy"]) return model
Example #9
Source File: mr_cnn_rnn.py From crnn with MIT License | 4 votes |
def build_model(): print('Build model...%d of %d' % (i + 1, folds)) main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input') embedding = Embedding(max_features, embedding_dims, weights=[np.matrix(W)], input_length=maxlen, name='embedding')(main_input) embedding = Dropout(0.50)(embedding) conv4 = Convolution1D(nb_filter=nb_filter, filter_length=4, border_mode='valid', activation='relu', subsample_length=1, name='conv4')(embedding) maxConv4 = MaxPooling1D(pool_length=2, name='maxConv4')(conv4) conv5 = Convolution1D(nb_filter=nb_filter, filter_length=5, border_mode='valid', activation='relu', subsample_length=1, name='conv5')(embedding) maxConv5 = MaxPooling1D(pool_length=2, name='maxConv5')(conv5) x = merge([maxConv4, maxConv5], mode='concat') x = Dropout(0.15)(x) x = RNN(rnn_output_size)(x) x = Dense(hidden_dims, activation='relu', init='he_normal', W_constraint = maxnorm(3), b_constraint=maxnorm(3), name='mlp')(x) x = Dropout(0.10, name='drop')(x) output = Dense(1, init='he_normal', activation='sigmoid', name='output')(x) model = Model(input=main_input, output=output) model.compile(loss={'output':'binary_crossentropy'}, optimizer=Adadelta(lr=0.95, epsilon=1e-06), metrics=["accuracy"]) return model
Example #10
Source File: sst2_cnn_rnn.py From crnn with MIT License | 4 votes |
def build_model(): main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input') embedding = Embedding(max_features, embedding_dims, weights=[np.matrix(W)], input_length=maxlen, name='embedding')(main_input) embedding = Dropout(0.50)(embedding) conv4 = Conv1D(filters=nb_filter, kernel_size=4, padding='valid', activation='relu', strides=1, name='conv4')(embedding) maxConv4 = MaxPooling1D(pool_size=2, name='maxConv4')(conv4) conv5 = Conv1D(filters=nb_filter, kernel_size=5, padding='valid', activation='relu', strides=1, name='conv5')(embedding) maxConv5 = MaxPooling1D(pool_size=2, name='maxConv5')(conv5) # x = merge([maxConv4, maxConv5], mode='concat') x = keras.layers.concatenate([maxConv4, maxConv5]) x = Dropout(0.15)(x) x = RNN(rnn_output_size)(x) x = Dense(hidden_dims, activation='relu', kernel_initializer='he_normal', kernel_constraint = maxnorm(3), bias_constraint=maxnorm(3), name='mlp')(x) x = Dropout(0.10, name='drop')(x) output = Dense(1, kernel_initializer='he_normal', activation='sigmoid', name='output')(x) model = Model(inputs=main_input, outputs=output) model.compile(loss='binary_crossentropy', # optimizer=Adadelta(lr=0.95, epsilon=1e-06), # optimizer=Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0), # optimizer=Adagrad(lr=0.01, epsilon=1e-08, decay=1e-4), metrics=["accuracy"]) return model
Example #11
Source File: planner.py From costar_plan with Apache License 2.0 | 4 votes |
def AddDense(x, size, activation, dropout_rate, output=False, momentum=MOMENTUM, constraint=3, bn=True, kr=0., ar=0., perm_drop=False): ''' Add a single dense block with batchnorm and activation. Parameters: ----------- x: input tensor size: number of dense neurons activation: activation fn to use dropout_rate: dropout to use after activation Returns: -------- x: output tensor ''' if isinstance(kr, float) and kr > 0: kr = keras.regularizers.l2(kr) elif isinstance(kr, float): kr = None else: kr = kr if isinstance(ar, float) and ar > 0: ar = keras.regularizers.l1(ar) elif isinstance(ar, float): ar = None else: ar = ar if constraint is not None: x = Dense(size, kernel_constraint=maxnorm(constraint), kernel_regularizer=kr, activity_regularizer=ar,)(x) else: x = Dense(size, kernel_regularizer=kr, activity_regularizer=ar,)(x) if not output and bn: #x = BatchNormalization(momentum=momentum)(x) x = InstanceNormalization()(x) if activation == "lrelu": x = LeakyReLU(alpha=0.2)(x) else: x = Activation(activation)(x) if dropout_rate > 0: if perm_drop: x = PermanentDropout(dropout_rate)(x) else: x = Dropout(dropout_rate)(x) return x
Example #12
Source File: model.py From textfool with MIT License | 4 votes |
def build_model(max_length=1000, nb_filters=64, kernel_size=3, pool_size=2, regularization=0.01, weight_constraint=2., dropout_prob=0.4, clear_session=True): if clear_session: K.clear_session() model = Sequential() model.add(Embedding( embeddings.shape[0], embeddings.shape[1], input_length=max_length, trainable=False, weights=[embeddings])) model.add(Conv1D(nb_filters, kernel_size, activation='relu')) model.add(Conv1D(nb_filters, kernel_size, activation='relu')) model.add(MaxPooling1D(pool_size)) model.add(Dropout(dropout_prob)) model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu')) model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu')) model.add(MaxPooling1D(pool_size)) model.add(Dropout(dropout_prob)) model.add(GlobalAveragePooling1D()) model.add(Dense(1, kernel_regularizer=l2(regularization), kernel_constraint=maxnorm(weight_constraint), activation='sigmoid')) model.compile( loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model
Example #13
Source File: nn_models.py From datastories-semeval2017-task4 with MIT License | 4 votes |
def build_attention_RNN(embeddings, classes, max_length, unit=LSTM, cells=64, layers=1, **kwargs): # parameters bi = kwargs.get("bidirectional", False) noise = kwargs.get("noise", 0.) dropout_words = kwargs.get("dropout_words", 0) dropout_rnn = kwargs.get("dropout_rnn", 0) dropout_rnn_U = kwargs.get("dropout_rnn_U", 0) dropout_attention = kwargs.get("dropout_attention", 0) dropout_final = kwargs.get("dropout_final", 0) attention = kwargs.get("attention", None) final_layer = kwargs.get("final_layer", False) clipnorm = kwargs.get("clipnorm", 1) loss_l2 = kwargs.get("loss_l2", 0.) lr = kwargs.get("lr", 0.001) model = Sequential() model.add(embeddings_layer(max_length=max_length, embeddings=embeddings, trainable=False, masking=True, scale=False, normalize=False)) if noise > 0: model.add(GaussianNoise(noise)) if dropout_words > 0: model.add(Dropout(dropout_words)) for i in range(layers): rs = (layers > 1 and i < layers - 1) or attention model.add(get_RNN(unit, cells, bi, return_sequences=rs, dropout_U=dropout_rnn_U)) if dropout_rnn > 0: model.add(Dropout(dropout_rnn)) if attention == "memory": model.add(AttentionWithContext()) if dropout_attention > 0: model.add(Dropout(dropout_attention)) elif attention == "simple": model.add(Attention()) if dropout_attention > 0: model.add(Dropout(dropout_attention)) if final_layer: model.add(MaxoutDense(100, W_constraint=maxnorm(2))) # model.add(Highway()) if dropout_final > 0: model.add(Dropout(dropout_final)) model.add(Dense(classes, activity_regularizer=l2(loss_l2))) model.add(Activation('softmax')) model.compile(optimizer=Adam(clipnorm=clipnorm, lr=lr), loss='categorical_crossentropy') return model