Python chainer.testing.attr.gpu() Examples
The following are 30
code examples of chainer.testing.attr.gpu().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.testing.attr
, or try the search function
.
Example #1
Source File: test_roi_align_2d.py From chainer-mask-rcnn with MIT License | 6 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) rois_cpu = chainer.Variable(self.rois) y_cpu = functions.roi_align_2d( x_cpu, rois_cpu, outh=self.outh, outw=self.outw, spatial_scale=self.spatial_scale, sampling_ratio=self.sampling_ratio, ) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) rois_gpu = chainer.Variable(cuda.to_gpu(self.rois)) y_gpu = functions.roi_align_2d( x_gpu, rois_gpu, outh=self.outh, outw=self.outw, spatial_scale=self.spatial_scale, sampling_ratio=self.sampling_ratio, ) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #2
Source File: test_roi_average_align_2d.py From chainer with MIT License | 6 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) rois_cpu = chainer.Variable(self.rois) roi_indices_cpu = chainer.Variable(self.roi_indices) y_cpu = functions.roi_average_align_2d( x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize, spatial_scale=self.spatial_scale, sampling_ratio=self.sampling_ratio, ) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) rois_gpu = chainer.Variable(cuda.to_gpu(self.rois)) roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices)) y_gpu = functions.roi_average_align_2d( x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize, spatial_scale=self.spatial_scale, sampling_ratio=self.sampling_ratio, ) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #3
Source File: test_roi_max_pooling_2d.py From chainer with MIT License | 6 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) rois_cpu = chainer.Variable(self.rois) roi_indices_cpu = chainer.Variable(self.roi_indices) y_cpu = functions.roi_max_pooling_2d( x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize, spatial_scale=self.spatial_scale) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) rois_gpu = chainer.Variable(cuda.to_gpu(self.rois)) roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices)) y_gpu = functions.roi_max_pooling_2d( x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize, spatial_scale=self.spatial_scale) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #4
Source File: test_mlp_bn.py From chainerrl with MIT License | 6 votes |
def _test_call(self, gpu): nonlinearity = getattr(F, self.nonlinearity) mlp = chainerrl.links.MLPBN( in_size=self.in_size, out_size=self.out_size, hidden_sizes=self.hidden_sizes, normalize_input=self.normalize_input, normalize_output=self.normalize_output, nonlinearity=nonlinearity, last_wscale=self.last_wscale, ) batch_size = 7 x = np.random.rand(batch_size, self.in_size).astype(np.float32) if gpu >= 0: mlp.to_gpu(gpu) x = chainer.cuda.to_gpu(x) y = mlp(x) self.assertEqual(y.shape, (batch_size, self.out_size)) self.assertEqual(chainer.cuda.get_array_module(y), chainer.cuda.get_array_module(x))
Example #5
Source File: test_roi_average_pooling_2d.py From chainer with MIT License | 6 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) rois_cpu = chainer.Variable(self.rois) roi_indices_cpu = chainer.Variable(self.roi_indices) y_cpu = functions.roi_average_pooling_2d( x_cpu, rois_cpu, roi_indices_cpu, outsize=self.outsize, spatial_scale=self.spatial_scale) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) rois_gpu = chainer.Variable(cuda.to_gpu(self.rois)) roi_indices_gpu = chainer.Variable(cuda.to_gpu(self.roi_indices)) y_gpu = functions.roi_average_pooling_2d( x_gpu, rois_gpu, roi_indices_gpu, outsize=self.outsize, spatial_scale=self.spatial_scale) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #6
Source File: backend.py From chainer with MIT License | 6 votes |
def get_pytest_marks(self): marks = [] if self.use_chainerx: marks.append(attr.chainerx) backend_name, device_index = self.chainerx_device.split(':') device_index = int(device_index) if backend_name == 'cuda': marks.append(attr.gpu) if device_index >= 1: marks.append(attr.multi_gpu(device_index + 1)) elif self.use_cuda: marks.append(attr.gpu) if self.use_cudnn != 'never': marks.append(attr.cudnn) if self.cuda_device >= 1: marks.append(attr.multi_gpu(self.cuda_device + 1)) else: if self.use_ideep != 'never': marks.append(attr.ideep) assert all(callable(_) for _ in marks) return marks
Example #7
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def test_im2col_nd_1_cpu(self): ndim = len(self.dims) ksize = (1,) * ndim stride = (1,) * ndim pad = (1,) * ndim self.check_im2col_nd(ksize, stride, pad, gpu=False)
Example #8
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def test_col2im_1_cpu(self): ndim = len(self.dims) ksize = (1,) * ndim stride = (1,) * ndim pad = (1,) * ndim self.check_col2im_nd(ksize, stride, pad, gpu=False)
Example #9
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def check_col2im_nd(self, ksize, stride, pad, gpu): dims = self.dims outs = tuple(conv_nd.get_conv_outsize(d, k, s, p) for (d, k, s, p) in zip(dims, ksize, stride, pad)) col_shape = (2, 3) + ksize + outs col = numpy.random.uniform(-1, 1, col_shape).astype(numpy.float32) if gpu: col_data = cuda.to_gpu(col) else: col_data = col img = conv_nd.col2im_nd(col_data, stride, pad, dims) img = cuda.to_cpu(img) img_shape = (2, 3) + dims self.assertEqual(img.shape, img_shape) for n in moves.range(2): for c in moves.range(3): for xs in itertools.product( *[moves.range(d) for d in dims]): v = numpy.float32(0.0) for dxs in itertools.product( *[moves.range(k) for k in ksize]): oxs = tuple((x + p - dx) // s for (x, p, dx, s) in zip(xs, pad, dxs, stride)) if all((x + p - dx) % s == 0 for (x, p, dx, s) in zip(xs, pad, dxs, stride)) and \ all(0 <= ox < out for (ox, out) in zip(oxs, outs)): col_index = (n, c) + dxs + oxs v += col[col_index] img_index = (n, c) + xs self.assertAlmostEqual(img[img_index], v)
Example #10
Source File: test_conv.py From chainer with MIT License | 5 votes |
def test_im2col_cpu(self): self.check_im2col(*self.params, gpu=False)
Example #11
Source File: test_conv.py From chainer with MIT License | 5 votes |
def check_col2im(self, kh, kw, sy, sx, ph, pw, dy, dx, gpu): col_h = conv.get_conv_outsize(self.h, kh, sy, ph, d=dy) col_w = conv.get_conv_outsize(self.w, kw, sx, pw, d=dx) shape = (2, 3, kh, kw, col_h, col_w) col = numpy.random.uniform(-1, 1, shape).astype(self.dtype) if gpu: col_data = cuda.to_gpu(col) else: col_data = col img = conv.col2im( col_data, sy, sx, ph, pw, self.h, self.w, dy=dy, dx=dx) img = cuda.to_cpu(img) self.assertEqual(img.shape, (2, 3, self.h, self.w)) for y in moves.range(self.h): for x in moves.range(self.w): v = numpy.zeros((2, 3), self.dtype) for ky in moves.range(kh): for kx in moves.range(kw): oy = (y + ph - ky * dy) // sy ox = (x + pw - kx * dx) // sx if ((y + ph - ky * dy) % sy == 0 and (x + pw - kx * dx) % sx == 0 and 0 <= oy < col_h and 0 <= ox < col_w): v += col[:, :, ky, kx, oy, ox] testing.assert_allclose(img[:, :, y, x], v)
Example #12
Source File: test_conv.py From chainer with MIT License | 5 votes |
def test_col2im_cpu(self): self.check_col2im(*self.params, gpu=False)
Example #13
Source File: test_conv.py From chainer with MIT License | 5 votes |
def test_col2im_gpu(self): self.check_col2im(*self.params, gpu=True)
Example #14
Source File: test_backprop_utils.py From chainer with MIT License | 5 votes |
def _get_method(self, prefix, gpu): suffix = 'gpu' if gpu else 'cpu' return getattr(self.f, prefix + '_' + suffix)
Example #15
Source File: test_weight_standardization.py From chainer with MIT License | 5 votes |
def check_weight_is_parameter(self, gpu): layer, hook = self._init_layer() if gpu: with testing.assert_warns(DeprecationWarning): layer = layer.to_gpu() source_weight = getattr(layer, hook.weight_name) x = cuda.to_gpu(self.x) if gpu else self.x layer(x) assert getattr(layer, hook.weight_name) is source_weight
Example #16
Source File: test_affine_channel_2d.py From chainer-mask-rcnn with MIT License | 5 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) W = chainer.Variable(self.W) b = chainer.Variable(self.b) y_cpu = functions.affine_channel_2d(x_cpu, W, b) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) W = chainer.Variable(cuda.to_gpu(self.W)) b = chainer.Variable(cuda.to_gpu(self.b)) y_gpu = functions.affine_channel_2d(x_gpu, W, b) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #17
Source File: test_conv.py From chainer with MIT License | 5 votes |
def check_im2col(self, kh, kw, sy, sx, ph, pw, dy, dx, gpu): if gpu: img = cuda.to_gpu(self.img) else: img = self.img col = conv.im2col(img, kh, kw, sy, sx, ph, pw, dy=dy, dx=dx) col_h = conv.get_conv_outsize(self.h, kh, sy, ph, d=dy) col_w = conv.get_conv_outsize(self.w, kw, sx, pw, d=dx) self.assertEqual(col.shape, (2, 3, kh, kw, col_h, col_w)) col = cuda.to_cpu(col) for y in moves.range(col_h): for x in moves.range(col_w): for ky in moves.range(kh): for kx in moves.range(kw): oy = y * sy - ph + ky * dy ox = x * sx - pw + kx * dx if 0 <= oy < self.h and 0 <= ox < self.w: testing.assert_allclose( col[:, :, ky, kx, y, x], self.img[:, :, oy, ox]) else: testing.assert_allclose( col[:, :, ky, kx, y, x], numpy.zeros((2, 3), self.dtype))
Example #18
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def test_im2col_nd_3_cpu(self): ndim = len(self.dims) ksize = (1, 2, 1)[:ndim] stride = (2, 1, 2)[:ndim] pad = (1, 2, 1)[:ndim] self.check_im2col_nd(ksize, stride, pad, gpu=False)
Example #19
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def test_im2col_nd_2_cpu(self): ndim = len(self.dims) ksize = (2,) * ndim stride = (2,) * ndim pad = (2,) * ndim self.check_im2col_nd(ksize, stride, pad, gpu=False)
Example #20
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_det_identity_gpu(self): self.det_identity(gpu=True)
Example #21
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def check_im2col_nd(self, ksize, stride, pad, gpu): dims = self.dims if gpu: img = cuda.to_gpu(self.img) else: img = self.img col = conv_nd.im2col_nd(img, ksize, stride, pad) outs = tuple(conv_nd.get_conv_outsize(d, k, s, p) for (d, k, s, p) in zip(dims, ksize, stride, pad)) expected_shape = (2, 3) + ksize + outs self.assertEqual(col.shape, expected_shape) col = cuda.to_cpu(col) for n in moves.range(2): for c in moves.range(3): for xs in itertools.product( *[moves.range(out) for out in outs]): for dxs in itertools.product( *[moves.range(k) for k in ksize]): oxs = tuple(x * s - p + dx for (x, s, p, dx) in zip(xs, stride, pad, dxs)) if all(0 <= ox < d for (ox, d) in zip(oxs, dims)): col_index = (n, c) + dxs + xs img_index = (n, c) + oxs self.assertEqual( col[col_index], self.img[img_index]) else: col_index = (n, c) + dxs + xs self.assertEqual(col[col_index], 0)
Example #22
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_det_scaling_gpu(self): self.det_scaling(gpu=True)
Example #23
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_det_transpose_cpu(self): self.det_transpose(gpu=False)
Example #24
Source File: test_roi_pooling_2d.py From chainer with MIT License | 5 votes |
def test_forward_cpu_gpu_equal(self): # cpu x_cpu = chainer.Variable(self.x) rois_cpu = chainer.Variable(self.rois) y_cpu = functions.roi_pooling_2d( x_cpu, rois_cpu, outh=self.outh, outw=self.outw, spatial_scale=self.spatial_scale) # gpu x_gpu = chainer.Variable(cuda.to_gpu(self.x)) rois_gpu = chainer.Variable(cuda.to_gpu(self.rois)) y_gpu = functions.roi_pooling_2d( x_gpu, rois_gpu, outh=self.outh, outw=self.outw, spatial_scale=self.spatial_scale) testing.assert_allclose(y_cpu.data, cuda.to_cpu(y_gpu.data))
Example #25
Source File: test_det.py From chainer with MIT License | 5 votes |
def det_identity(self, gpu=False): if self.batched: chk = numpy.ones(len(self.x), dtype=self.dtype) dt = numpy.identity(self.x.shape[1], dtype=self.dtype) idt = numpy.repeat(dt[None], len(self.x), axis=0) else: idt = numpy.identity(self.x.shape[1], dtype=self.dtype) chk = numpy.ones(1, dtype=self.dtype) if gpu: chk = cuda.to_gpu(chk) idt = cuda.to_gpu(idt) idtv = chainer.Variable(idt) idtd = self.det(idtv) testing.assert_allclose(idtd.data, chk, **self.check_forward_options)
Example #26
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_answer_gpu_cpu(self): x = cuda.to_gpu(self.x) y = F.batch_det(chainer.Variable(x)) gpu = cuda.to_cpu(y.data) if self.dtype == numpy.float16: cpu = numpy.linalg.det( self.x.astype(numpy.float32)).astype(numpy.float16) testing.assert_allclose(gpu, cpu, atol=5e-3, rtol=5e-3) else: cpu = numpy.linalg.det(self.x) testing.assert_allclose(gpu, cpu)
Example #27
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_answer_gpu_cpu(self): x = cuda.to_gpu(self.x) y = F.det(chainer.Variable(x)) gpu = cuda.to_cpu(y.data) if self.dtype == numpy.float16: cpu = numpy.linalg.det( self.x.astype(numpy.float32)).astype(numpy.float16) testing.assert_allclose(gpu, cpu, atol=5e-3, rtol=5e-3) else: cpu = numpy.linalg.det(self.x) testing.assert_allclose(gpu, cpu)
Example #28
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_det_product_cpu(self): self.det_product(gpu=False)
Example #29
Source File: test_det.py From chainer with MIT License | 5 votes |
def det_product(self, gpu=False): if gpu: cx = cuda.to_gpu(self.x) cy = cuda.to_gpu(self.y) else: cx = self.x cy = self.y vx = chainer.Variable(cx) vy = chainer.Variable(cy) dxy1 = self.det(self.matmul(vx, vy)) dxy2 = self.det(vx) * self.det(vy) testing.assert_allclose( dxy1.data, dxy2.data, **self.check_forward_options)
Example #30
Source File: test_det.py From chainer with MIT License | 5 votes |
def test_det_identity_cpu(self): self.det_identity(gpu=False)