Python keras.layers.convolutional.MaxPooling2D() Examples
The following are 30
code examples of keras.layers.convolutional.MaxPooling2D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers.convolutional
, or try the search function
.
Example #1
Source File: multiclass_DenseResNet.py From CNNArt with Apache License 2.0 | 6 votes |
def Block(input,num_filters,with_shortcut): out1 = Conv2D(filters=num_filters/2, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) out2 = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out1) out3 = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out2) # out4 = pool2(pool_size=(3, 3), strides=(2, 2), data_format="channel_first")(out3) if with_shortcut: input = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None, padding='same',strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) return add([input,out3]) else: input = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same',strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) return add([input,out3]) # DenseResNet 4040
Example #2
Source File: inception_v4.py From keras-inceptionV4 with Apache License 2.0 | 6 votes |
def block_reduction_a(input): if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 384, 3, 3, strides=(2,2), padding='valid') branch_1 = conv2d_bn(input, 192, 1, 1) branch_1 = conv2d_bn(branch_1, 224, 3, 3) branch_1 = conv2d_bn(branch_1, 256, 3, 3, strides=(2,2), padding='valid') branch_2 = MaxPooling2D((3,3), strides=(2,2), padding='valid')(input) x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis) return x
Example #3
Source File: train_and_save.py From MNIST-cnn with MIT License | 6 votes |
def cnn(trn_set, tst_set): trn_x, trn_y = trn_set trn_y = np.squeeze(trn_y, axis=2) tst_x, tst_y = tst_set tst_y = np.squeeze(tst_y, axis=2) model = Sequential() model.add(Convolution2D(2, 5, 5, activation='sigmoid', input_shape=(1, 28, 28))) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1)) return model, trn_x, trn_y, tst_x, tst_y ################################################################################
Example #4
Source File: inception_v4.py From keras-inceptionV4 with Apache License 2.0 | 6 votes |
def block_reduction_b(input): if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 192, 1, 1) branch_0 = conv2d_bn(branch_0, 192, 3, 3, strides=(2, 2), padding='valid') branch_1 = conv2d_bn(input, 256, 1, 1) branch_1 = conv2d_bn(branch_1, 256, 1, 7) branch_1 = conv2d_bn(branch_1, 320, 7, 1) branch_1 = conv2d_bn(branch_1, 320, 3, 3, strides=(2,2), padding='valid') branch_2 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(input) x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis) return x
Example #5
Source File: inception_v4.py From cnn_evaluation_smoke with GNU General Public License v3.0 | 6 votes |
def block_reduction_b(input): if K.image_dim_ordering() == "th": channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 192, 1, 1) branch_0 = conv2d_bn(branch_0, 192, 3, 3, subsample=(2, 2), border_mode='valid') branch_1 = conv2d_bn(input, 256, 1, 1) branch_1 = conv2d_bn(branch_1, 256, 1, 7) branch_1 = conv2d_bn(branch_1, 320, 7, 1) branch_1 = conv2d_bn(branch_1, 320, 3, 3, subsample=(2,2), border_mode='valid') branch_2 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(input) x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis) return x
Example #6
Source File: inception_v4.py From cnn_evaluation_smoke with GNU General Public License v3.0 | 6 votes |
def block_reduction_a(input): if K.image_dim_ordering() == "th": channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 384, 3, 3, subsample=(2,2), border_mode='valid') branch_1 = conv2d_bn(input, 192, 1, 1) branch_1 = conv2d_bn(branch_1, 224, 3, 3) branch_1 = conv2d_bn(branch_1, 256, 3, 3, subsample=(2,2), border_mode='valid') branch_2 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input) x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis) return x
Example #7
Source File: cnn_mnist.py From deep_learning_ex with MIT License | 6 votes |
def init_model(): """ """ start_time = time.time() print 'Compiling model...' model = Sequential() model.add(Convolution2D(64, 3,3, border_mode='valid', input_shape=INPUT_SHAPE)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(.25)) model.add(Flatten()) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) print 'Model compiled in {0} seconds'.format(time.time() - start_time) model.summary() return model
Example #8
Source File: cnn_model_train.py From Sign-Language-Interpreter-using-Deep-Learning with MIT License | 6 votes |
def cnn_model(): num_of_classes = get_num_of_classes() model = Sequential() model.add(Conv2D(16, (2,2), input_shape=(image_x, image_y, 1), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same')) model.add(Conv2D(32, (3,3), activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), padding='same')) model.add(Conv2D(64, (5,5), activation='relu')) model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same')) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(num_of_classes, activation='softmax')) sgd = optimizers.SGD(lr=1e-2) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) filepath="cnn_model_keras2.h5" checkpoint1 = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint1] #from keras.utils import plot_model #plot_model(model, to_file='model.png', show_shapes=True) return model, callbacks_list
Example #9
Source File: model.py From keras-vis with MIT License | 6 votes |
def build_model(): inp = Input(shape=(FRAME_H, FRAME_W, 3)) x = Conv2D(filters=8, kernel_size=(5, 5), activation='relu')(inp) x = MaxPooling2D((2, 2))(x) x = Conv2D(filters=16, kernel_size=(5, 5), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')(x) x = MaxPooling2D((2, 2))(x) x = Flatten()(x) x = Dropout(0.5)(x) x = Dense(128, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='tanh')(x) return Model(inputs=[inp], outputs=[x])
Example #10
Source File: inception_v4.py From FashionAI_Tianchi_2018 with MIT License | 6 votes |
def block_reduction_b(input): if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 192, 1, 1) branch_0 = conv2d_bn(branch_0, 192, 3, 3, strides=(2, 2), padding='valid') branch_1 = conv2d_bn(input, 256, 1, 1) branch_1 = conv2d_bn(branch_1, 256, 1, 7) branch_1 = conv2d_bn(branch_1, 320, 7, 1) branch_1 = conv2d_bn(branch_1, 320, 3, 3, strides=(2,2), padding='valid') branch_2 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(input) x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis) return x
Example #11
Source File: multiclass_DenseResNet.py From CNNArt with Apache License 2.0 | 6 votes |
def Block(input, num_filters, with_shortcut): out1 = Conv2D(filters=int(num_filters / 2), kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) out2 = Conv2D(filters=int(num_filters), kernel_size=(3, 3), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out1) out3 = Conv2D(filters=int(num_filters), kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out2) # out4 = pool2(pool_size=(3, 3), strides=(2, 2), data_format="channel_first")(out3) if with_shortcut: input = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) return add([input, out3]) else: input = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input) return add([input, out3]) # DenseResNet 4040
Example #12
Source File: inception_resnet_v2.py From Inception-v4 with MIT License | 6 votes |
def reduction_A(input, k=192, l=224, m=256, n=384): if K.image_dim_ordering() == "th": channel_axis = 1 else: channel_axis = -1 r1 = MaxPooling2D((3,3), strides=(2,2))(input) r2 = Convolution2D(n, 3, 3, activation='relu', subsample=(2,2))(input) r3 = Convolution2D(k, 1, 1, activation='relu', border_mode='same')(input) r3 = Convolution2D(l, 3, 3, activation='relu', border_mode='same')(r3) r3 = Convolution2D(m, 3, 3, activation='relu', subsample=(2,2))(r3) m = merge([r1, r2, r3], mode='concat', concat_axis=channel_axis) m = BatchNormalization(axis=1)(m) m = Activation('relu')(m) return m
Example #13
Source File: inception_v4.py From FashionAI_Tianchi_2018 with MIT License | 6 votes |
def block_reduction_a(input): if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = -1 branch_0 = conv2d_bn(input, 384, 3, 3, strides=(2,2), padding='valid') branch_1 = conv2d_bn(input, 192, 1, 1) branch_1 = conv2d_bn(branch_1, 224, 3, 3) branch_1 = conv2d_bn(branch_1, 256, 3, 3, strides=(2,2), padding='valid') branch_2 = MaxPooling2D((3,3), strides=(2,2), padding='valid')(input) x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis) return x
Example #14
Source File: lenet.py From aiexamples with Apache License 2.0 | 6 votes |
def build(input_shape, classes): model = Sequential() # CONV => RELU => POOL model.add(Conv2D(20, kernel_size=5, padding="same", input_shape=input_shape)) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # CONV => RELU => POOL model.add(Conv2D(50, kernel_size=5, border_mode="same")) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Flatten层到RELU层 model.add(Flatten()) model.add(Dense(500)) model.add(Activation("relu")) # softmax分类器 model.add(Dense(classes)) model.add(Activation("softmax")) return model
Example #15
Source File: cnn.py From DeepFashion with Apache License 2.0 | 6 votes |
def model_create(input_shape, num_classes): logging.debug('input_shape {}'.format(input_shape)) model = Sequential() model.add(Conv2D(32, (3, 3), border_mode='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) # use binary_crossentropy if has just 2 prediction yes or no model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) return model
Example #16
Source File: inception_resnet_v2.py From Inception-v4 with MIT License | 6 votes |
def reduction_resnet_v2_B(input): if K.image_dim_ordering() == "th": channel_axis = 1 else: channel_axis = -1 r1 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input) r2 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input) r2 = Convolution2D(384, 3, 3, activation='relu', subsample=(2,2))(r2) r3 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input) r3 = Convolution2D(288, 3, 3, activation='relu', subsample=(2, 2))(r3) r4 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input) r4 = Convolution2D(288, 3, 3, activation='relu', border_mode='same')(r4) r4 = Convolution2D(320, 3, 3, activation='relu', subsample=(2, 2))(r4) m = merge([r1, r2, r3, r4], concat_axis=channel_axis, mode='concat') m = BatchNormalization(axis=channel_axis)(m) m = Activation('relu')(m) return m
Example #17
Source File: cnn_mnist.py From deep_learning_ex with MIT License | 5 votes |
def init_model_1(): start_time = time.time() print 'Compiling model...' model = Sequential() model.add(Convolution2D(64, 3,3, border_mode='valid',input_shape=INPUT_SHAPE)) model.add(Activation('relu')) model.add(Convolution2D(64, 3,3, border_mode='valid')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(.5)) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy']) print 'Model compiled in {0} seconds'.format(time.time() - start_time) return model
Example #18
Source File: tiramisu.py From neural-road-inspector with MIT License | 5 votes |
def TransitionDown(self,filters): model = self.model model.add(BatchNormalization(mode=0, axis=1, gamma_regularizer=l2(0.0001), beta_regularizer=l2(0.0001))) model.add(Activation('relu')) model.add(Conv2D(filters, kernel_size=(1, 1), padding='same', kernel_initializer="he_uniform")) model.add(Dropout(0.2)) model.add(MaxPooling2D( pool_size=(2, 2), strides=(2, 2), data_format='channels_last'))
Example #19
Source File: MNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fCreateMaxPooling2D(input_t, stride=(2, 2)): output_t = MaxPooling2D(pool_size=stride, strides=stride, padding='valid')(input_t) return output_t
Example #20
Source File: MNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fCreateMaxPooling2D(input_t, stride=(2, 2)): output_t = MaxPooling2D(pool_size=stride, strides=stride, padding='valid')(input_t) return output_t
Example #21
Source File: cnn_major_shallow.py From Facial-Expression-Recognition with MIT License | 5 votes |
def baseline_model(): # Initialising the CNN model = Sequential() # 1 - Convolution model.add(Conv2D(64,(3,3), border_mode='same', input_shape=(48, 48,1))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 2nd Convolution layer model.add(Conv2D(128,(5,5), border_mode='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # Flattening model.add(Flatten()) # Fully connected layer 1st layer model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Dense(num_class, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy]) return model
Example #22
Source File: motion_MNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fCreateMaxPooling2D(input_t,stride=(2,2)): output_t=MaxPooling2D(pool_size=stride, strides=stride, padding='valid')(input_t) return output_t
Example #23
Source File: lenet.py From DL4CVStarterBundle with GNU General Public License v3.0 | 5 votes |
def build(width, height, depth, classes): # Initialize the model model = Sequential() input_shape = (height, width, depth) # If we are using 'channels-first', update the input shape if K.image_data_format() == 'channels_first': input_shape = (depth, height, width) # First set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # First (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation('relu')) # Softmax classifier model.add(Dense(classes)) model.add(Activation('softmax')) # return the constructed network architecture return model
Example #24
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxpooling_2d(): pool_size = (3, 3) for strides in [(1, 1), (2, 2)]: layer_test(convolutional.MaxPooling2D, kwargs={'strides': strides, 'padding': 'valid', 'pool_size': pool_size}, input_shape=(3, 5, 6, 4))
Example #25
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxpooling_2d(): pool_size = (3, 3) for strides in [(1, 1), (2, 2)]: layer_test(convolutional.MaxPooling2D, kwargs={'strides': strides, 'padding': 'valid', 'pool_size': pool_size}, input_shape=(3, 5, 6, 4))
Example #26
Source File: lenet.py From DL4CVStarterBundle with GNU General Public License v3.0 | 5 votes |
def build(width, height, depth, classes): # Initialize the model model = Sequential() input_shape = (height, width, depth) # If we are using 'channels-first', update the input shape if K.image_data_format() == 'channels_first': input_shape = (depth, height, width) # First set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # First (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation('relu')) # Softmax classifier model.add(Dense(classes)) model.add(Activation('softmax')) # return the constructed network architecture return model
Example #27
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxpooling_2d(): pool_size = (3, 3) for strides in [(1, 1), (2, 2)]: layer_test(convolutional.MaxPooling2D, kwargs={'strides': strides, 'padding': 'valid', 'pool_size': pool_size}, input_shape=(3, 5, 6, 4))
Example #28
Source File: lenet.py From DL4CVStarterBundle with GNU General Public License v3.0 | 5 votes |
def build(width, height, depth, classes): # Initialize the model model = Sequential() input_shape = (height, width, depth) # If we are using 'channels-first', update the input shape if K.image_data_format() == 'channels_first': input_shape = (depth, height, width) # First set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # First (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation('relu')) # Softmax classifier model.add(Dense(classes)) model.add(Activation('softmax')) # return the constructed network architecture return model
Example #29
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_maxpooling_2d(): pool_size = (3, 3) for strides in [(1, 1), (2, 2)]: layer_test(convolutional.MaxPooling2D, kwargs={'strides': strides, 'padding': 'valid', 'pool_size': pool_size}, input_shape=(3, 5, 6, 4))
Example #30
Source File: inception_v4.py From Inception-v4 with MIT License | 5 votes |
def inception_stem(input): if K.image_dim_ordering() == "th": channel_axis = 1 else: channel_axis = -1 # Input Shape is 299 x 299 x 3 (th) or 3 x 299 x 299 (th) x = conv_block(input, 32, 3, 3, subsample=(2, 2), border_mode='valid') x = conv_block(x, 32, 3, 3, border_mode='valid') x = conv_block(x, 64, 3, 3) x1 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(x) x2 = conv_block(x, 96, 3, 3, subsample=(2, 2), border_mode='valid') x = merge([x1, x2], mode='concat', concat_axis=channel_axis) x1 = conv_block(x, 64, 1, 1) x1 = conv_block(x1, 96, 3, 3, border_mode='valid') x2 = conv_block(x, 64, 1, 1) x2 = conv_block(x2, 64, 1, 7) x2 = conv_block(x2, 64, 7, 1) x2 = conv_block(x2, 96, 3, 3, border_mode='valid') x = merge([x1, x2], mode='concat', concat_axis=channel_axis) x1 = conv_block(x, 192, 3, 3, subsample=(2, 2), border_mode='valid') x2 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(x) x = merge([x1, x2], mode='concat', concat_axis=channel_axis) return x