Python sklearn.preprocessing.MaxAbsScaler() Examples
The following are 19
code examples of sklearn.preprocessing.MaxAbsScaler().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.preprocessing
, or try the search function
.
Example #1
Source File: testScoreWithAdapaLgbm.py From nyoka with Apache License 2.0 | 6 votes |
def test_02_lgbm_classifier(self): print("\ntest 02 (lgbm classifier with preprocessing) [multi-class]\n") model = LGBMClassifier() pipeline_obj = Pipeline([ ('scaler',MaxAbsScaler()), ("model", model) ]) pipeline_obj.fit(self.X,self.Y) file_name = "test02lgbm.pmml" lgb_to_pmml(pipeline_obj, self.features, 'Species', file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file) model_pred = pipeline_obj.predict(self.X) model_prob = pipeline_obj.predict_proba(self.X) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #2
Source File: reg_go2.py From Benchmarks with MIT License | 6 votes |
def load_data(): data_path = args['in'] df = (pd.read_csv(data_path,skiprows=1).values).astype('float32') df_y = df[:,0].astype('float32') df_x = df[:, 1:PL].astype(np.float32) # scaler = MaxAbsScaler() scaler = StandardScaler() df_x = scaler.fit_transform(df_x) X_train, X_test, Y_train, Y_test = train_test_split(df_x, df_y, test_size= 0.20, random_state=42) print('x_train shape:', X_train.shape) print('x_test shape:', X_test.shape) return X_train, Y_train, X_test, Y_test
Example #3
Source File: test_preprocessing.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.preprocessing.Binarizer, pp.Binarizer) self.assertIs(df.preprocessing.FunctionTransformer, pp.FunctionTransformer) self.assertIs(df.preprocessing.Imputer, pp.Imputer) self.assertIs(df.preprocessing.KernelCenterer, pp.KernelCenterer) self.assertIs(df.preprocessing.LabelBinarizer, pp.LabelBinarizer) self.assertIs(df.preprocessing.LabelEncoder, pp.LabelEncoder) self.assertIs(df.preprocessing.MultiLabelBinarizer, pp.MultiLabelBinarizer) self.assertIs(df.preprocessing.MaxAbsScaler, pp.MaxAbsScaler) self.assertIs(df.preprocessing.MinMaxScaler, pp.MinMaxScaler) self.assertIs(df.preprocessing.Normalizer, pp.Normalizer) self.assertIs(df.preprocessing.OneHotEncoder, pp.OneHotEncoder) self.assertIs(df.preprocessing.PolynomialFeatures, pp.PolynomialFeatures) self.assertIs(df.preprocessing.RobustScaler, pp.RobustScaler) self.assertIs(df.preprocessing.StandardScaler, pp.StandardScaler)
Example #4
Source File: scaler.py From pyts with BSD 3-Clause "New" or "Revised" License | 6 votes |
def transform(self, X): """Scale the data. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data to scale. Returns ------- X_new : array-like, shape = (n_samples, n_timestamps) Scaled data. """ X = check_array(X, dtype='float64') scaler = SklearnMaxAbsScaler() X_new = scaler.fit_transform(X.T).T return X_new
Example #5
Source File: data_utils.py From adviser with GNU General Public License v3.0 | 6 votes |
def normalize_cv(X, y, i, norm="zero_score"): X_test = X[i] y_test = y[i] X_train = pd.concat(X[:i] + X[i+1:]) y_train = pd.concat(y[:i] + y[i+1:]) if norm == "min_max": scaler = preprocessing.MinMaxScaler() elif norm == "max_abs": scaler = preprocessing.MaxAbsScaler() else: scaler = preprocessing.StandardScaler() X_train = pd.DataFrame(scaler.fit_transform(X_train), index=y_train.index.values) X_train.columns = X[i].columns.values X_test = pd.DataFrame(scaler.transform(X_test), index=y_test.index.values) X_test.columns = X[i].columns.values return X_train, X_test, y_train, y_test
Example #6
Source File: classifier.py From Semantic-Texual-Similarity-Toolkits with MIT License | 6 votes |
def train_model(self, train_file_path, model_path): print("==> Load the data ...") X_train, Y_train = self.load_file(train_file_path) print(train_file_path, shape(X_train)) print("==> Train the model ...") min_max_scaler = preprocessing.MaxAbsScaler() X_train_minmax = min_max_scaler.fit_transform(X_train) clf = GradientBoostingRegressor(n_estimators=self.n_estimators) clf.fit(X_train_minmax.toarray(), Y_train) print("==> Save the model ...") pickle.dump(clf, open(model_path, 'wb')) scaler_path = model_path.replace('.pkl', '.scaler.pkl') pickle.dump(min_max_scaler, open(scaler_path, 'wb')) return clf
Example #7
Source File: classifier.py From Semantic-Texual-Similarity-Toolkits with MIT License | 6 votes |
def train_model(self, train_file_path, model_path): print("==> Load the data ...") X_train, Y_train = self.load_file(train_file_path) print(train_file_path, shape(X_train)) print("==> Train the model ...") min_max_scaler = preprocessing.MaxAbsScaler() X_train_minmax = min_max_scaler.fit_transform(X_train) clf = RandomForestRegressor(n_estimators=self.n_estimators) clf.fit(X_train_minmax.toarray(), Y_train) print("==> Save the model ...") pickle.dump(clf, open(model_path, 'wb')) scaler_path = model_path.replace('.pkl', '.scaler.pkl') pickle.dump(min_max_scaler, open(scaler_path, 'wb')) return clf
Example #8
Source File: testScoreWithAdapaXgboost.py From nyoka with Apache License 2.0 | 6 votes |
def test_01_xgb_classifier(self): print("\ntest 01 (xgb classifier with preprocessing) [multi-class]\n") model = XGBClassifier() pipeline_obj = Pipeline([ ('scaler',MaxAbsScaler()), ("model", model) ]) pipeline_obj.fit(self.X,self.Y) file_name = "test01xgboost.pmml" xgboost_to_pmml(pipeline_obj, self.features, 'Species', file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, self.test_file) model_pred = pipeline_obj.predict(self.X) model_prob = pipeline_obj.predict_proba(self.X) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #9
Source File: preprocessing.py From default-credit-card-prediction with MIT License | 5 votes |
def scale_by_max_value(X): """ Scale each feature by its abs maximum value. Keyword arguments: X -- The feature vectors """ if verbose: print '\nScaling to the range [-1,1] ...' max_abs_scaler = preprocessing.MaxAbsScaler() return max_abs_scaler.fit_transform(X)
Example #10
Source File: main_dl_experiments.py From DeepLearning_IDS with MIT License | 5 votes |
def sparse_normalize_dataset(dataset): """ Normaliza dataset without removing the sparseness structure of the data """ #Remove mean of dataset dataset = dataset - np.mean(dataset) #Truncate to +/-3 standard deviations and scale to -1 to 1 std_dev = 3 * np.std(dataset) dataset = np.maximum(np.minimum(dataset, std_dev), -std_dev) / std_dev #Rescale from [-1, 1] to [0.1, 0.9] dataset = (dataset + 1) * 0.4 + 0.1 #dataset = (dataset-np.amin(dataset))/(np.amax(dataset)-np.amin(dataset)) return dataset #return preprocessing.MaxAbsScaler().fit_transform(dataset)
Example #11
Source File: data_utils.py From adviser with GNU General Public License v3.0 | 5 votes |
def normalize(data, norm="zero_score", scaler=None): """Normalize pandas Dataframe. @param data: Input dataframe @param norm: normalization method [default: zero_score standardization], alternatives: 'min_max', 'max_abs' @return datascaled: normalized dataframe """ if scaler is not None: datascaled = pd.DataFrame(scaler.transform(data), index=data.index.values) datascaled.columns = data.columns.values else: if norm == "min_max": scaler = preprocessing.MinMaxScaler() elif norm == "max_abs": scaler = preprocessing.MaxAbsScaler() else: scaler = preprocessing.StandardScaler() datascaled = pd.DataFrame(scaler.fit_transform(data), index=data.index.values) datascaled.columns = data.columns.values return datascaled, scaler # deprecated - use sklearn.model_selection.train_test_split instead
Example #12
Source File: text_models.py From mindmeld with Apache License 2.0 | 5 votes |
def _get_feature_scaler(self): """Get a feature value scaler based on the model settings""" if self.config.model_settings is None: scale_type = None else: scale_type = self.config.model_settings.get("feature_scaler") scaler = { "std-dev": StandardScaler(with_mean=False), "max-abs": MaxAbsScaler(), }.get(scale_type) return scaler
Example #13
Source File: memm.py From mindmeld with Apache License 2.0 | 5 votes |
def _get_feature_scaler(scale_type): """Get a feature value scaler based on the model settings""" scaler = { "std-dev": StandardScaler(with_mean=False), "max-abs": MaxAbsScaler(), }.get(scale_type) return scaler
Example #14
Source File: p1b3.py From Benchmarks with MIT License | 5 votes |
def scale(df, scaling=None): """Scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to scale scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std') type of scaling to apply """ if scaling is None or scaling.lower() == 'none': return df df = df.dropna(axis=1, how='any') # Scaling data if scaling == 'maxabs': # Normalizing -1 to 1 scaler = MaxAbsScaler() elif scaling == 'minmax': # Scaling to [0,1] scaler = MinMaxScaler() else: # Standard normalization scaler = StandardScaler() mat = df.as_matrix() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df
Example #15
Source File: p1b3.py From Benchmarks with MIT License | 5 votes |
def impute_and_scale(df, scaling='std'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ df = df.dropna(axis=1, how='all') #imputer = Imputer(strategy='mean', axis=0) imputer = Imputer(strategy='mean') mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df
Example #16
Source File: NCI60.py From Benchmarks with MIT License | 5 votes |
def impute_and_scale(df, scaling='std'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ df = df.dropna(axis=1, how='all') imputer = Imputer(strategy='mean') mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df
Example #17
Source File: nt3_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def load_data(train_path, test_path, gParameters): print('Loading data...') df_train = (pd.read_csv(train_path,header=None).values).astype('float32') df_test = (pd.read_csv(test_path,header=None).values).astype('float32') print('done') print('df_train shape:', df_train.shape) print('df_test shape:', df_test.shape) seqlen = df_train.shape[1] df_y_train = df_train[:,0].astype('int') df_y_test = df_test[:,0].astype('int') Y_train = np_utils.to_categorical(df_y_train,gParameters['classes']) Y_test = np_utils.to_categorical(df_y_test,gParameters['classes']) df_x_train = df_train[:, 1:seqlen].astype(np.float32) df_x_test = df_test[:, 1:seqlen].astype(np.float32) # X_train = df_x_train.as_matrix() # X_test = df_x_test.as_matrix() X_train = df_x_train X_test = df_x_test scaler = MaxAbsScaler() mat = np.concatenate((X_train, X_test), axis=0) mat = scaler.fit_transform(mat) X_train = mat[:X_train.shape[0], :] X_test = mat[X_train.shape[0]:, :] return X_train, Y_train, X_test, Y_test
Example #18
Source File: data_utils.py From Benchmarks with MIT License | 5 votes |
def scale_array(mat, scaling=None): """ Scale data included in numpy array. Parameters ---------- mat : numpy array Array to scale scaling : string String describing type of scaling to apply. Options recognized: 'maxabs', 'minmax', 'std'. 'maxabs' : scales data to range [-1 to 1]. 'minmax' : scales data to range [-1 to 1]. 'std' : scales data to normal variable with mean 0 and standard deviation 1. (Default: None, no scaling). Return ---------- Returns the numpy array scaled by the method specified. \ If no scaling method is specified, it returns the numpy \ array unmodified. """ if scaling is None or scaling.lower() == 'none': return mat # Scaling data if scaling == 'maxabs': # Scaling to [-1, 1] scaler = MaxAbsScaler(copy=False) elif scaling == 'minmax': # Scaling to [0,1] scaler = MinMaxScaler(copy=False) else: # Standard normalization scaler = StandardScaler(copy=False) return scaler.fit_transform(mat)
Example #19
Source File: data_utils.py From Benchmarks with MIT License | 4 votes |
def drop_impute_and_scale_dataframe(df, scaling='std', imputing='mean', dropna='all'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to process scaling : string String describing type of scaling to apply. 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (Default 'std') imputing : string String describing type of imputation to apply. 'mean' replace missing values with mean value along the column, 'median' replace missing values with median value along the column, 'most_frequent' replace missing values with most frequent value along column (Default: 'mean'). dropna : string String describing strategy for handling missing values. 'all' if all values are NA, drop that column. 'any' if any NA values are present, dropt that column. (Default: 'all'). Return ---------- Returns the data frame after handling missing values and scaling. """ if dropna: df = df.dropna(axis=1, how=dropna) else: empty_cols = df.columns[df.notnull().sum() == 0] df[empty_cols] = 0 if imputing is None or imputing.lower() == 'none': mat = df.values else: # imputer = Imputer(strategy=imputing, axis=0) # imputer = SimpleImputer(strategy=imputing) # Next line is from conditional import. axis=0 is default # in old version so it is not necessary. imputer = Imputer(strategy=imputing) mat = imputer.fit_transform(df.values) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df