Python chainer.training.extensions.observe_lr() Examples
The following are 5
code examples of chainer.training.extensions.observe_lr().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.training.extensions
, or try the search function
.
Example #1
Source File: train_ch.py From imgclsmob with MIT License | 4 votes |
def prepare_trainer(net, optimizer_name, lr, momentum, num_epochs, train_data, val_data, logging_dir_path, use_gpus): if optimizer_name == "sgd": optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum) elif optimizer_name == "nag": optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum) else: raise Exception("Unsupported optimizer: {}".format(optimizer_name)) optimizer.setup(net) # devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, ) devices = (0,) if use_gpus else (-1,) updater = training.updaters.StandardUpdater( iterator=train_data["iterator"], optimizer=optimizer, device=devices[0]) trainer = training.Trainer( updater=updater, stop_trigger=(num_epochs, "epoch"), out=logging_dir_path) val_interval = 100000, "iteration" log_interval = 1000, "iteration" trainer.extend( extension=extensions.Evaluator( iterator=val_data["iterator"], target=net, device=devices[0]), trigger=val_interval) trainer.extend(extensions.dump_graph("main/loss")) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend( extensions.snapshot_object( net, "model_iter_{.updater.iteration}"), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend( extensions.PrintReport([ "epoch", "iteration", "main/loss", "validation/main/loss", "main/accuracy", "validation/main/accuracy", "lr"]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) return trainer
Example #2
Source File: train_ch_cifar.py From imgclsmob with MIT License | 4 votes |
def prepare_trainer(net, optimizer_name, lr, momentum, num_epochs, train_iter, val_iter, logging_dir_path, num_gpus=0): if optimizer_name == "sgd": optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum) elif optimizer_name == "nag": optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum) else: raise Exception('Unsupported optimizer: {}'.format(optimizer_name)) optimizer.setup(net) # devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, ) devices = (0,) if num_gpus > 0 else (-1,) updater = training.updaters.StandardUpdater( iterator=train_iter, optimizer=optimizer, device=devices[0]) trainer = training.Trainer( updater=updater, stop_trigger=(num_epochs, 'epoch'), out=logging_dir_path) val_interval = 100000, 'iteration' log_interval = 1000, 'iteration' trainer.extend( extension=extensions.Evaluator( val_iter, net, device=devices[0]), trigger=val_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend( extensions.snapshot_object( net, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend( extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'lr']), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) return trainer
Example #3
Source File: train_ch_in1k.py From imgclsmob with MIT License | 4 votes |
def prepare_trainer(net, optimizer_name, lr, momentum, num_epochs, train_iter, val_iter, logging_dir_path, num_gpus=0): if optimizer_name == "sgd": optimizer = chainer.optimizers.MomentumSGD(lr=lr, momentum=momentum) elif optimizer_name == "nag": optimizer = chainer.optimizers.NesterovAG(lr=lr, momentum=momentum) else: raise Exception('Unsupported optimizer: {}'.format(optimizer_name)) optimizer.setup(net) # devices = tuple(range(num_gpus)) if num_gpus > 0 else (-1, ) devices = (0,) if num_gpus > 0 else (-1,) updater = training.updaters.StandardUpdater( iterator=train_iter, optimizer=optimizer, device=devices[0]) trainer = training.Trainer( updater=updater, stop_trigger=(num_epochs, 'epoch'), out=logging_dir_path) val_interval = 100000, 'iteration' log_interval = 1000, 'iteration' trainer.extend( extension=extensions.Evaluator( val_iter, net, device=devices[0]), trigger=val_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend( extensions.snapshot_object( net, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend( extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'lr']), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) return trainer
Example #4
Source File: train.py From models with MIT License | 4 votes |
def train_one_epoch(model, train_data, lr, gpu, batchsize, out): train_model = PixelwiseSoftmaxClassifier(model) if gpu >= 0: # Make a specified GPU current chainer.cuda.get_device_from_id(gpu).use() train_model.to_gpu() # Copy the model to the GPU log_trigger = (0.1, 'epoch') validation_trigger = (1, 'epoch') end_trigger = (1, 'epoch') train_data = TransformDataset( train_data, ('img', 'label_map'), SimpleDoesItTransform(model.mean)) val = VOCSemanticSegmentationWithBboxDataset( split='val').slice[:, ['img', 'label_map']] # Iterator train_iter = iterators.MultiprocessIterator(train_data, batchsize) val_iter = iterators.MultiprocessIterator( val, 1, shuffle=False, repeat=False, shared_mem=100000000) # Optimizer optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9) optimizer.setup(train_model) optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0001)) # Updater updater = training.updaters.StandardUpdater( train_iter, optimizer, device=gpu) # Trainer trainer = training.Trainer(updater, end_trigger, out=out) trainer.extend(extensions.LogReport(trigger=log_trigger)) trainer.extend(extensions.observe_lr(), trigger=log_trigger) trainer.extend(extensions.dump_graph('main/loss')) if extensions.PlotReport.available(): trainer.extend(extensions.PlotReport( ['main/loss'], x_key='iteration', file_name='loss.png')) trainer.extend(extensions.PlotReport( ['validation/main/miou'], x_key='iteration', file_name='miou.png')) trainer.extend(extensions.snapshot_object( model, filename='snapshot.npy'), trigger=end_trigger) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'elapsed_time', 'lr', 'main/loss', 'validation/main/miou', 'validation/main/mean_class_accuracy', 'validation/main/pixel_accuracy']), trigger=log_trigger) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.extend( SemanticSegmentationEvaluator( val_iter, model, voc_semantic_segmentation_label_names), trigger=validation_trigger) trainer.run()
Example #5
Source File: train.py From portrait_matting with GNU General Public License v3.0 | 4 votes |
def register_extensions(trainer, model, test_iter, args): if args.mode.startswith('seg'): # Max accuracy best_trigger = training.triggers.BestValueTrigger( 'validation/main/accuracy', lambda a, b: a < b, (1, 'epoch')) elif args.mode.startswith('mat'): # Min loss best_trigger = training.triggers.BestValueTrigger( 'validation/main/loss', lambda a, b: a > b, (1, 'epoch')) else: logger.error('Invalid training mode') # Segmentation extensions trainer.extend( custom_extensions.PortraitVisEvaluator( test_iter, model, device=args.gpus[0], converter=select_converter(args.mode), filename='vis_epoch={epoch}_idx={index}.jpg', mode=args.mode ), trigger=(1, 'epoch')) # Basic extensions trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.LogReport(trigger=(200, 'iteration'))) trainer.extend(extensions.ProgressBar(update_interval=20)) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'lr', 'elapsed_time'])) trainer.extend(extensions.observe_lr(), trigger=(200, 'iteration')) # Snapshots trainer.extend(extensions.snapshot( filename='snapshot_epoch_{.updater.epoch}' ), trigger=(5, 'epoch')) trainer.extend(extensions.snapshot_object( model, filename='model_best' ), trigger=best_trigger) # ChainerUI extensions trainer.extend(chainerui.extensions.CommandsExtension()) chainerui.utils.save_args(args, args.out) # Plotting extensions if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport( ['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport( ['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png'))