Python chainer.training.extensions.PlotReport() Examples
The following are 10
code examples of chainer.training.extensions.PlotReport().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.training.extensions
, or try the search function
.
Example #1
Source File: gen_mnist_mlp.py From chainer-compiler with MIT License | 5 votes |
def main(): parser = argparse.ArgumentParser(description='Chainer example: MNIST') parser.add_argument('--batchsize', '-b', type=int, default=7, help='Number of images in each mini-batch') parser.add_argument('--epoch', '-e', type=int, default=20, help='Number of sweeps over the dataset to train') parser.add_argument('--frequency', '-f', type=int, default=-1, help='Frequency of taking a snapshot') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='result', help='Directory to output the result') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--unit', '-u', type=int, default=1000, help='Number of units') parser.add_argument('--noplot', dest='plot', action='store_false', help='Disable PlotReport extension') parser.add_argument('--onnx', default='', help='Export ONNX model') parser.add_argument('--model', '-m', default='model.npz', help='Model file name to serialize') parser.add_argument('--timeout', type=int, default=0, help='Enable timeout') parser.add_argument('--trace', default='', help='Enable tracing') parser.add_argument('--run_training', action='store_true', help='Run training') args = parser.parse_args() main_impl(args)
Example #2
Source File: gen_resnet50.py From chainer-compiler with MIT License | 4 votes |
def main(): archs = { 'alex': alex.Alex, 'nin': nin.NIN, 'resnet50': resnet50.ResNet50, } parser = argparse.ArgumentParser( description='Learning convnet from ILSVRC2012 dataset') parser.add_argument('--arch', '-a', choices=archs.keys(), default='resnet50', help='Convnet architecture') parser.add_argument('--train', default='', help='Path to training image-label list file') parser.add_argument('--val', default='', help='Path to validation image-label list file') parser.add_argument('--batchsize', '-B', type=int, default=32, help='Learning minibatch size') parser.add_argument('--epoch', '-E', type=int, default=10, help='Number of epochs to train') parser.add_argument('--frequency', '-f', type=int, default=-1, help='Frequency of taking a snapshot') parser.add_argument('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU') parser.add_argument('--initmodel', help='Initialize the model from given file') parser.add_argument('--loaderjob', '-j', type=int, help='Number of parallel data loading processes') parser.add_argument('--mean', '-m', default='mean.npy', help='Mean file (computed by compute_mean.py)') parser.add_argument('--noplot', dest='plot', action='store_false', help='Disable PlotReport extension') parser.add_argument('--resume', '-r', default='', help='Initialize the trainer from given file') parser.add_argument('--out', '-o', default='result', help='Output directory') parser.add_argument('--root', '-R', default='.', help='Root directory path of image files') parser.add_argument('--val_batchsize', '-b', type=int, default=250, help='Validation minibatch size') parser.add_argument('--test', action='store_true') parser.add_argument('--run_training', action='store_true', help='Run training') parser.set_defaults(test=False) args = parser.parse_args() model_cls = archs[args.arch] main_impl(args, model_cls) # TODO(hamaji): Stop writing a file to scripts. with open('scripts/%s_stamp' % args.arch, 'w'): pass
Example #3
Source File: gen_resnet50.py From chainer-compiler with MIT License | 4 votes |
def run_training(args, model): trainer = create_trainer(args, model) # Dump a computational graph from 'loss' variable at the first iteration # The "main" refers to the target link of the "main" optimizer. trainer.extend(extensions.dump_graph('main/loss')) # Take a snapshot for each specified epoch frequency = args.epoch if args.frequency == -1 else max(1, args.frequency) trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch')) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport()) # Save two plot images to the result dir if args.plot and extensions.PlotReport.available(): trainer.extend( extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport( ['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) # Print selected entries of the log to stdout # Here "main" refers to the target link of the "main" optimizer again, and # "validation" refers to the default name of the Evaluator extension. # Entries other than 'epoch' are reported by the Classifier link, called by # either the updater or the evaluator. trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) # Print a progress bar to stdout trainer.extend(extensions.ProgressBar()) if args.resume: # Resume from a snapshot chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run()
Example #4
Source File: gen_mnist_mlp.py From chainer-compiler with MIT License | 4 votes |
def run_training(args, model): trainer = create_trainer(args, model) # Dump a computational graph from 'loss' variable at the first iteration # The "main" refers to the target link of the "main" optimizer. trainer.extend(extensions.dump_graph('main/loss')) # Take a snapshot for each specified epoch frequency = args.epoch if args.frequency == -1 else max(1, args.frequency) trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch')) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport()) # Save two plot images to the result dir if args.plot and extensions.PlotReport.available(): trainer.extend( extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport( ['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) # Print selected entries of the log to stdout # Here "main" refers to the target link of the "main" optimizer again, and # "validation" refers to the default name of the Evaluator extension. # Entries other than 'epoch' are reported by the Classifier link, called by # either the updater or the evaluator. trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) # Print a progress bar to stdout trainer.extend(extensions.ProgressBar()) if args.resume: # Resume from a snapshot chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run()
Example #5
Source File: chainer_model.py From char-rnn-text-generation with MIT License | 4 votes |
def train_main(args): """ trains model specfied in args. main method for train subcommand. """ # load text with open(args.text_path) as f: text = f.read() logger.info("corpus length: %s.", len(text)) # data iterator data_iter = DataIterator(text, args.batch_size, args.seq_len) # load or build model if args.restore: logger.info("restoring model.") load_path = args.checkpoint_path if args.restore is True else args.restore model = load_model(load_path) else: net = Network(vocab_size=VOCAB_SIZE, embedding_size=args.embedding_size, rnn_size=args.rnn_size, num_layers=args.num_layers, drop_rate=args.drop_rate) model = L.Classifier(net) # make checkpoint directory log_dir = make_dirs(args.checkpoint_path) with open("{}.json".format(args.checkpoint_path), "w") as f: json.dump(model.predictor.args, f, indent=2) chainer.serializers.save_npz(args.checkpoint_path, model) logger.info("model saved: %s.", args.checkpoint_path) # optimizer optimizer = chainer.optimizers.Adam(alpha=args.learning_rate) optimizer.setup(model) # clip gradient norm optimizer.add_hook(chainer.optimizer.GradientClipping(args.clip_norm)) # trainer updater = BpttUpdater(data_iter, optimizer) trainer = chainer.training.Trainer(updater, (args.num_epochs, 'epoch'), out=log_dir) trainer.extend(extensions.snapshot_object(model, filename=os.path.basename(args.checkpoint_path))) trainer.extend(extensions.ProgressBar(update_interval=1)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PlotReport(y_keys=["main/loss"])) trainer.extend(LoggerExtension(text)) # training start model.predictor.reset_state() logger.info("start of training.") time_train = time.time() trainer.run() # training end duration_train = time.time() - time_train logger.info("end of training, duration: %ds.", duration_train) # generate text seed = generate_seed(text) generate_text(model, seed, 1024, 3) return model
Example #6
Source File: train_fcn32s.py From fcn with MIT License | 4 votes |
def get_trainer(optimizer, iter_train, iter_valid, iter_valid_raw, class_names, args): model = optimizer.target updater = chainer.training.StandardUpdater( iter_train, optimizer, device=args.gpu) trainer = chainer.training.Trainer( updater, (args.max_iteration, 'iteration'), out=args.out) trainer.extend(fcn.extensions.ParamsReport(args.__dict__)) trainer.extend(extensions.ProgressBar(update_interval=5)) trainer.extend(extensions.LogReport( trigger=(args.interval_print, 'iteration'))) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'elapsed_time', 'main/loss', 'validation/main/miou'])) def pred_func(x): model(x) return model.score trainer.extend( fcn.extensions.SemanticSegmentationVisReport( pred_func, iter_valid_raw, transform=fcn.datasets.transform_lsvrc2012_vgg16, class_names=class_names, device=args.gpu, shape=(4, 2)), trigger=(args.interval_eval, 'iteration')) trainer.extend( chainercv.extensions.SemanticSegmentationEvaluator( iter_valid, model, label_names=class_names), trigger=(args.interval_eval, 'iteration')) trainer.extend(extensions.snapshot_object( target=model, filename='model_best.npz'), trigger=chainer.training.triggers.MaxValueTrigger( key='validation/main/miou', trigger=(args.interval_eval, 'iteration'))) assert extensions.PlotReport.available() trainer.extend(extensions.PlotReport( y_keys=['main/loss'], x_key='iteration', file_name='loss.png', trigger=(args.interval_print, 'iteration'))) trainer.extend(extensions.PlotReport( y_keys=['validation/main/miou'], x_key='iteration', file_name='miou.png', trigger=(args.interval_print, 'iteration'))) return trainer
Example #7
Source File: train.py From models with MIT License | 4 votes |
def train_one_epoch(model, train_data, lr, gpu, batchsize, out): train_model = PixelwiseSoftmaxClassifier(model) if gpu >= 0: # Make a specified GPU current chainer.cuda.get_device_from_id(gpu).use() train_model.to_gpu() # Copy the model to the GPU log_trigger = (0.1, 'epoch') validation_trigger = (1, 'epoch') end_trigger = (1, 'epoch') train_data = TransformDataset( train_data, ('img', 'label_map'), SimpleDoesItTransform(model.mean)) val = VOCSemanticSegmentationWithBboxDataset( split='val').slice[:, ['img', 'label_map']] # Iterator train_iter = iterators.MultiprocessIterator(train_data, batchsize) val_iter = iterators.MultiprocessIterator( val, 1, shuffle=False, repeat=False, shared_mem=100000000) # Optimizer optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9) optimizer.setup(train_model) optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0001)) # Updater updater = training.updaters.StandardUpdater( train_iter, optimizer, device=gpu) # Trainer trainer = training.Trainer(updater, end_trigger, out=out) trainer.extend(extensions.LogReport(trigger=log_trigger)) trainer.extend(extensions.observe_lr(), trigger=log_trigger) trainer.extend(extensions.dump_graph('main/loss')) if extensions.PlotReport.available(): trainer.extend(extensions.PlotReport( ['main/loss'], x_key='iteration', file_name='loss.png')) trainer.extend(extensions.PlotReport( ['validation/main/miou'], x_key='iteration', file_name='miou.png')) trainer.extend(extensions.snapshot_object( model, filename='snapshot.npy'), trigger=end_trigger) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'elapsed_time', 'lr', 'main/loss', 'validation/main/miou', 'validation/main/mean_class_accuracy', 'validation/main/pixel_accuracy']), trigger=log_trigger) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.extend( SemanticSegmentationEvaluator( val_iter, model, voc_semantic_segmentation_label_names), trigger=validation_trigger) trainer.run()
Example #8
Source File: demo_nnpu_chainer.py From pywsl with MIT License | 4 votes |
def main(): gpu, out = -1, "result" stepsize = 0.001 batchsize, epoch = 10000, 10 beta, gamma = 0., 1. data_id, prior = 0, .5 n_p, n_n, n_u, n_t, n_vp, n_vn, n_vu = 100, 0, 10000, 100, 20, 20, 100 data_name, x_p, x_n, x_u, y_u, x_t, y_t, x_vp, x_vn, x_vu, y_vu \ = load_dataset(data_id, n_p, n_n, n_u, prior, n_t, n_vp=n_vp, n_vn=n_vn, n_vu=n_vu) x_p, x_n, x_u, x_t, x_vp, x_vn, x_vu = x_p.astype(np.float32), x_n.astype(np.float32), \ x_u.astype(np.float32), x_t.astype(np.float32), x_vp.astype(np.float32), \ x_vn.astype(np.float32), x_vu.astype(np.float32), XYtrain = TupleDataset(np.r_[x_p, x_u], np.r_[np.ones(100), np.zeros(10000)].astype(np.int32)) XYtest = TupleDataset(np.r_[x_vp, x_vu], np.r_[np.ones(20), np.zeros(100)].astype(np.int32)) train_iter = chainer.iterators.SerialIterator(XYtrain, batchsize) test_iter = chainer.iterators.SerialIterator(XYtest, batchsize, repeat=False, shuffle=False) loss_type = lambda x: F.sigmoid(-x) nnpu_risk = PU_Risk(prior, loss=loss_type, nnPU=True, gamma=gamma, beta=beta) pu_acc = PU_Accuracy(prior) model = L.Classifier(MLP(), lossfun=nnpu_risk, accfun=pu_acc) if gpu >= 0: chainer.backends.cuda.get_device_from_id(gpu).use() model.to_gpu(gpu) optimizer = chainer.optimizers.Adam(alpha=stepsize) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(0.005)) updater = chainer.training.StandardUpdater(train_iter, optimizer, device=gpu) trainer = chainer.training.Trainer(updater, (epoch, 'epoch'), out=out) trainer.extend(extensions.LogReport(trigger=(1, 'epoch'))) trainer.extend(extensions.Evaluator(test_iter, model, device=gpu)) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) key = 'validation/main/accuracy' model_name = 'model' trainer.extend(extensions.snapshot_object(model, model_name), trigger=chainer.training.triggers.MaxValueTrigger(key)) if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name=f'loss_curve.png')) trainer.extend( extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name=f'accuracy_curve.png')) trainer.run() yh = pred(model, x_t, batchsize, gpu) mr = prior*np.mean(yh[y_t == +1] <= 0) + (1-prior)*np.mean(yh[y_t == -1] >= 0) print("mr: {}".format(mr))
Example #9
Source File: train.py From portrait_matting with GNU General Public License v3.0 | 4 votes |
def register_extensions(trainer, model, test_iter, args): if args.mode.startswith('seg'): # Max accuracy best_trigger = training.triggers.BestValueTrigger( 'validation/main/accuracy', lambda a, b: a < b, (1, 'epoch')) elif args.mode.startswith('mat'): # Min loss best_trigger = training.triggers.BestValueTrigger( 'validation/main/loss', lambda a, b: a > b, (1, 'epoch')) else: logger.error('Invalid training mode') # Segmentation extensions trainer.extend( custom_extensions.PortraitVisEvaluator( test_iter, model, device=args.gpus[0], converter=select_converter(args.mode), filename='vis_epoch={epoch}_idx={index}.jpg', mode=args.mode ), trigger=(1, 'epoch')) # Basic extensions trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.LogReport(trigger=(200, 'iteration'))) trainer.extend(extensions.ProgressBar(update_interval=20)) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'lr', 'elapsed_time'])) trainer.extend(extensions.observe_lr(), trigger=(200, 'iteration')) # Snapshots trainer.extend(extensions.snapshot( filename='snapshot_epoch_{.updater.epoch}' ), trigger=(5, 'epoch')) trainer.extend(extensions.snapshot_object( model, filename='model_best' ), trigger=best_trigger) # ChainerUI extensions trainer.extend(chainerui.extensions.CommandsExtension()) chainerui.utils.save_args(args, args.out) # Plotting extensions if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport( ['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport( ['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png'))
Example #10
Source File: train.py From Video-frame-prediction-by-multi-scale-GAN with MIT License | 4 votes |
def main(resume, gpu, load_path, data_path): dataset = Dataset(data_path) GenNetwork = MultiScaleGenerator(c.SCALE_FMS_G, c.SCALE_KERNEL_SIZES_G) DisNetwork = MultiScaleDiscriminator(c.SCALE_CONV_FMS_D, c.SCALE_KERNEL_SIZES_D, c.SCALE_FC_LAYER_SIZES_D) optimizers = {} optimizers["GeneratorNetwork"] = chainer.optimizers.SGD(c.LRATE_G) optimizers["DiscriminatorNetwork"] = chainer.optimizers.SGD(c.LRATE_D) iterator = chainer.iterators.SerialIterator(dataset, 1) params = {'LAM_ADV': 0.05, 'LAM_LP': 1, 'LAM_GDL': .1} updater = Updater(iterators=iterator, optimizers=optimizers, GeneratorNetwork=GenNetwork, DiscriminatorNetwork=DisNetwork, params=params, device=gpu ) if gpu>=0: updater.GenNetwork.to_gpu() updater.DisNetwork.to_gpu() trainer = chainer.training.Trainer(updater, (500000, 'iteration'), out='result') trainer.extend(extensions.snapshot(filename='snapshot'), trigger=(1, 'iteration')) trainer.extend(extensions.snapshot_object(trainer.updater.GenNetwork, "GEN")) trainer.extend(saveGen) log_keys = ['epoch', 'iteration', 'GeneratorNetwork/L2Loss', 'GeneratorNetwork/GDL', 'DiscriminatorNetwork/DisLoss', 'GeneratorNetwork/CompositeGenLoss'] print_keys = ['GeneratorNetwork/CompositeGenLoss','DiscriminatorNetwork/DisLoss'] trainer.extend(extensions.LogReport(keys=log_keys, trigger=(10, 'iteration'))) trainer.extend(extensions.PrintReport(print_keys), trigger=(10, 'iteration')) trainer.extend(extensions.PlotReport(['DiscriminatorNetwork/DisLoss'], 'iteration', (10, 'iteration'), file_name="DisLoss.png")) trainer.extend(extensions.PlotReport(['GeneratorNetwork/CompositeGenLoss'], 'iteration', (10, 'iteration'), file_name="GenLoss.png")) trainer.extend(extensions.PlotReport(['GeneratorNetwork/AdvLoss'], 'iteration', (10, 'iteration'), file_name="AdvGenLoss.png")) trainer.extend(extensions.PlotReport(['GeneratorNetwork/AdvLoss','DiscriminatorNetwork/DisLoss'], 'iteration', (10, 'iteration'), file_name="AdversarialLosses.png")) trainer.extend(extensions.PlotReport(['GeneratorNetwork/L2Loss'], 'iteration', (10, 'iteration'),file_name="L2Loss.png")) trainer.extend(extensions.PlotReport(['GeneratorNetwork/GDL'], 'iteration', (10, 'iteration'),file_name="GDL.png")) trainer.extend(extensions.ProgressBar(update_interval=10)) if resume: # Resume from a snapshot chainer.serializers.load_npz(load_path, trainer) print(trainer.updater.__dict__) trainer.run()