Python keras.applications.Xception() Examples
The following are 11
code examples of keras.applications.Xception().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications
, or try the search function
.
Example #1
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_bare_keras_module(self): """ Keras GraphFunctions should give the same result as standard Keras models """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) for model_gen, preproc_fn, target_size in [(InceptionV3, iv3.preprocess_input, model_sizes['InceptionV3']), (Xception, xcpt.preprocess_input, model_sizes['Xception']), (ResNet50, rsnt.preprocess_input, model_sizes['ResNet50'])]: keras_model = model_gen(weights="imagenet") _preproc_img_list = [] for fpath in img_fpaths: img = load_img(fpath, target_size=target_size) # WARNING: must apply expand dimensions first, or ResNet50 preprocessor fails img_arr = np.expand_dims(img_to_array(img), axis=0) _preproc_img_list.append(preproc_fn(img_arr)) imgs_input = np.vstack(_preproc_img_list) preds_ref = keras_model.predict(imgs_input) gfn_bare_keras = GraphFunction.fromKeras(keras_model) with IsolatedSession(using_keras=True) as issn: K.set_learning_phase(0) feeds, fetches = issn.importGraphFunction(gfn_bare_keras) preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_input}) np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=self.featurizerCompareDigitsExact)
Example #2
Source File: test_pieces.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_pipeline(self): """ Pipeline should provide correct function composition """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) xcpt_model = Xception(weights="imagenet") stages = [('spimage', gfac.buildSpImageConverter('BGR', 'float32')), ('xception', GraphFunction.fromKeras(xcpt_model))] piped_model = GraphFunction.fromList(stages) for fpath in img_fpaths: target_size = model_sizes['Xception'] img = load_img(fpath, target_size=target_size) img_arr = np.expand_dims(img_to_array(img), axis=0) img_input = xcpt.preprocess_input(img_arr) preds_ref = xcpt_model.predict(img_input) spimg_input_dict = imageArrayToStruct(img_input).asDict() spimg_input_dict['data'] = bytes(spimg_input_dict['data']) with IsolatedSession() as issn: # Need blank import scope name so that spimg fields match the input names feeds, fetches = issn.importGraphFunction(piped_model, prefix="") feed_dict = dict( (tnsr, spimg_input_dict[tfx.op_name(tnsr, issn.graph)]) for tnsr in feeds) preds_tgt = issn.run(fetches[0], feed_dict=feed_dict) # Uncomment the line below to see the graph # tfx.write_visualization_html(issn.graph, # NamedTemporaryFile(prefix="gdef", suffix=".html").name) np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=self.featurizerCompareDigitsExact)
Example #3
Source File: _validateSchema.py From nyoka with Apache License 2.0 | 5 votes |
def test_validate_keras_xception(self): input_tensor = Input(shape=(224, 224, 3)) model = Xception(weights="imagenet", input_tensor=input_tensor) file_name = "keras"+model.name+".pmml" pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)]) pmml_obj.export(open(file_name,'w'),0) self.assertEqual(self.schema.is_valid(file_name), True)
Example #4
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #5
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #6
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #7
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #8
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #9
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #10
Source File: applications_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_xception(): app = applications.Xception last_dim = 2048 _test_application_basic(app) _test_application_notop(app, last_dim) _test_application_variable_input_channels(app, last_dim) _test_app_pooling(app, last_dim)
Example #11
Source File: features.py From vergeml with MIT License | 4 votes |
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'): from keras import applications, Model if include_top: assert output_layer == 'last' if size == 'auto': size = get_image_size(architecture, variant, size) shape = (size, size, 3) if architecture == 'densenet': if variant == 'auto': variant = 'densenet-121' if variant == 'densenet-121': model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape) elif variant == 'densenet-169': model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape) elif variant == 'densenet-201': model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'inception-resnet-v2': model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'mobilenet': model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha) elif architecture == 'mobilenet-v2': model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha) elif architecture == 'nasnet': if variant == 'auto': variant = 'large' if variant == 'large': model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape) else: model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'resnet-50': model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'vgg-16': model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'vgg-19': model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'xception': model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape) elif architecture == 'inception-v3': model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape) if output_layer != 'last': try: if isinstance(output_layer, int): layer = model.layers[output_layer] else: layer = model.get_layer(output_layer) except Exception: raise VergeMLError('layer not found: {}'.format(output_layer)) model = Model(inputs=model.input, outputs=layer.output) return model