Python keras.backend.exp() Examples
The following are 30
code examples of keras.backend.exp().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: attention_layer.py From text-classifier with Apache License 2.0 | 6 votes |
def call(self, x, mask=None): # size of x :[batch_size, sel_len, attention_dim] # size of u :[batch_size, attention_dim] # uit = tanh(xW+b) uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b)) ait = K.dot(uit, self.u) ait = K.squeeze(ait, -1) ait = K.exp(ait) if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano ait *= K.cast(mask, K.floatx()) ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx()) ait = K.expand_dims(ait) weighted_input = x * ait output = K.sum(weighted_input, axis=1) return output
Example #2
Source File: contrib.py From steppy-toolkit with MIT License | 6 votes |
def call(self, x, mask=None): # computes a probability distribution over the timesteps # uses 'max trick' for numerical stability # reshape is done to avoid issue with Tensorflow # and 1-dimensional weights logits = K.dot(x, self.W) x_shape = K.shape(x) logits = K.reshape(logits, (x_shape[0], x_shape[1])) ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True)) # masked timesteps have zero weight if mask is not None: mask = K.cast(mask, K.floatx()) ai = ai * mask att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon()) weighted_input = x * K.expand_dims(att_weights) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, att_weights] return result
Example #3
Source File: test_vae_lstm.py From keras_bn_library with MIT License | 6 votes |
def gen_cosine_amp(amp=100, period=1000, x0=0, xn=50000, step=1, k=0.0001): """Generates an absolute cosine time series with the amplitude exponentially decreasing Arguments: amp: amplitude of the cosine function period: period of the cosine function x0: initial x of the time series xn: final x of the time series step: step of the time series discretization k: exponential rate """ cos = np.zeros(((xn - x0) * step, 1, 1)) for i in range(len(cos)): idx = x0 + i * step cos[i, 0, 0] = amp * np.cos(2 * np.pi * idx / period) cos[i, 0, 0] = cos[i, 0, 0] * np.exp(-k * idx) return cos
Example #4
Source File: vae.py From pyod with BSD 2-Clause "Simplified" License | 6 votes |
def sampling(self, args): """Reparametrisation by sampling from Gaussian, N(0,I) To sample from epsilon = Norm(0,I) instead of from likelihood Q(z|X) with latent variables z: z = z_mean + sqrt(var) * epsilon Parameters ---------- args : tensor Mean and log of variance of Q(z|X). Returns ------- z : tensor Sampled latent variable. """ z_mean, z_log = args batch = K.shape(z_mean)[0] # batch size dim = K.int_shape(z_mean)[1] # latent dimension epsilon = K.random_normal(shape=(batch, dim)) # mean=0, std=1.0 return z_mean + K.exp(0.5 * z_log) * epsilon
Example #5
Source File: aae.py From Keras-GAN with MIT License | 6 votes |
def build_encoder(self): # Encoder img = Input(shape=self.img_shape) h = Flatten()(img) h = Dense(512)(h) h = LeakyReLU(alpha=0.2)(h) h = Dense(512)(h) h = LeakyReLU(alpha=0.2)(h) mu = Dense(self.latent_dim)(h) log_var = Dense(self.latent_dim)(h) latent_repr = merge([mu, log_var], mode=lambda p: p[0] + K.random_normal(K.shape(p[0])) * K.exp(p[1] / 2), output_shape=lambda p: p[0]) return Model(img, latent_repr)
Example #6
Source File: attention_with_context.py From DeepResearch with MIT License | 6 votes |
def call(self, x, mask=None): uit = dot_product(x, self.W) if self.bias: uit += self.b uit = K.tanh(uit) ait = dot_product(uit, self.u) a = K.exp(ait) # apply mask after the exp. will be re-normalized next if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano a *= K.cast(mask, K.floatx()) # in some cases especially in the early stages of training the sum may be almost zero # and this results in NaN's. A workaround is to add a very small positive number ε to the sum. # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) a = K.expand_dims(a) weighted_input = x * a return K.sum(weighted_input, axis=1)
Example #7
Source File: chapter_06_001.py From Python-Deep-Learning-SE with MIT License | 6 votes |
def sampling(args: tuple): """ Reparameterization trick by sampling z from unit Gaussian :param args: (tensor, tensor) mean and log of variance of q(z|x) :returns tensor: sampled latent vector z """ # unpack the input tuple z_mean, z_log_var = args # mini-batch size mb_size = K.shape(z_mean)[0] # latent space size dim = K.int_shape(z_mean)[1] # random normal vector with mean=0 and std=1.0 epsilon = K.random_normal(shape=(mb_size, dim)) return z_mean + K.exp(0.5 * z_log_var) * epsilon
Example #8
Source File: attention.py From deephlapan with GNU General Public License v2.0 | 6 votes |
def call(self, x, mask=None): eij = dot_product(x, self.W) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) weighted_input = x * K.expand_dims(a) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, a] return result
Example #9
Source File: loss.py From yolo3-keras with MIT License | 5 votes |
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): num_anchors = len(anchors) # [1, 1, 1, num_anchors, 2] anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) # 获得x,y的网格 # (13, 13, 1, 2) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) # (batch_size,13,13,3,85) feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # 将预测值调成真实值 # box_xy对应框的中心点 # box_wh对应框的宽和高 box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) # 在计算loss的时候返回如下参数 if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs #---------------------------------------------------# # 用于计算每个预测框与真实框的iou #---------------------------------------------------#
Example #10
Source File: caltech101_92_train.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #11
Source File: vae.py From pyod with BSD 2-Clause "Simplified" License | 5 votes |
def vae_loss(self, inputs, outputs, z_mean, z_log): """ Loss = Recreation loss + Kullback-Leibler loss for probability function divergence (ELBO). gamma > 1 and capacity != 0 for beta-VAE """ reconstruction_loss = self.loss(inputs, outputs) reconstruction_loss *= self.n_features_ kl_loss = 1 + z_log - K.square(z_mean) - K.exp(z_log) kl_loss = -0.5 * K.sum(kl_loss, axis=-1) kl_loss = self.gamma * K.abs(kl_loss - self.capacity) return K.mean(reconstruction_loss + kl_loss)
Example #12
Source File: trainDL.py From 4Dsurvival with GNU General Public License v3.0 | 5 votes |
def _negative_log_likelihood(E, risk): hazard_ratio = K.exp(risk) log_risk = K.log(K.cumsum(hazard_ratio)) uncensored_likelihood = risk - log_risk censored_likelihood = uncensored_likelihood * E neg_likelihood = -K.sum(censored_likelihood) return neg_likelihood
Example #13
Source File: mnist_general_latent_space_and_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #14
Source File: sdne_utils.py From GEM-Benchmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def sampling(args): z_mean, z_std = args epsilon_std = 1.0 epsilon = KBack.random_normal(shape=(z_mean._keras_shape[1],), mean=0., stddev=epsilon_std) return z_mean + z_std * epsilon # return z_mean + KBack.exp(z_std / 2) * epsilon
Example #15
Source File: utils.py From ImageAI with MIT License | 5 votes |
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): num_anchors = len(anchors) anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs
Example #16
Source File: tf_normal_sampler.py From social_lstm_keras_tf with GNU General Public License v3.0 | 5 votes |
def _to_normal2d(output_batch) -> ds.MultivariateNormalTriL: """ :param output_batch: (n_samples, 5) :return """ # mean of x and y x_mean = Lambda(lambda o: o[:, 0])(output_batch) y_mean = Lambda(lambda o: o[:, 1])(output_batch) # std of x and y # std is must be 0 or positive x_std = Lambda(lambda o: K.exp(o[:, 2]))(output_batch) y_std = Lambda(lambda o: K.exp(o[:, 3]))(output_batch) # correlation coefficient # correlation coefficient range is [-1, 1] cor = Lambda(lambda o: K.tanh(o[:, 4]))(output_batch) loc = Concatenate()([ Lambda(lambda x_mean: K.expand_dims(x_mean, 1))(x_mean), Lambda(lambda y_mean: K.expand_dims(y_mean, 1))(y_mean) ]) x_var = Lambda(lambda x_std: K.square(x_std))(x_std) y_var = Lambda(lambda y_std: K.square(y_std))(y_std) xy_cor = Multiply()([x_std, y_std, cor]) cov = Lambda(lambda inputs: K.stack(inputs, axis=0))( [x_var, xy_cor, xy_cor, y_var]) cov = Lambda(lambda cov: K.permute_dimensions(cov, (1, 0)))(cov) cov = Reshape((2, 2))(cov) scale_tril = Lambda(lambda cov: tf.cholesky(cov))(cov) mvn = ds.MultivariateNormalTriL(loc, scale_tril) return mvn
Example #17
Source File: model.py From yoloface with MIT License | 5 votes |
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): '''Convert final layer features to bounding box parameters''' num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) # height, width grid_shape = K.shape(feats)[1:3] grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs
Example #18
Source File: layers.py From keras-utilities with MIT License | 5 votes |
def call(self, x, mask=None): eij = dot_product(x, self.W) if self.bias: eij += self.b eij = K.tanh(eij) a = K.exp(eij) # apply mask after the exp. will be re-normalized next if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano a *= K.cast(mask, K.floatx()) # in some cases especially in the early stages of training the sum may be almost zero # and this results in NaN's. A workaround is to add a very small positive number ε to the sum. # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) weighted_input = x * K.expand_dims(a) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, a] return result
Example #19
Source File: caltech101_92_train.py From VAE-for-Image-Generation with MIT License | 5 votes |
def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_var) * epsilon
Example #20
Source File: cifar10_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #21
Source File: utils.py From squeezedet-keras with MIT License | 5 votes |
def safe_exp_np(w, thresh): """Safe exponential function for numpy tensors.""" slope = np.exp(thresh) lin_bool = w > thresh lin_region = lin_bool.astype(float) lin_out = slope*(w - thresh + 1.) exp_out = np.exp(np.where(lin_bool, np.zeros_like(w), w)) out = lin_region*lin_out + (1.-lin_region)*exp_out return out
Example #22
Source File: cifar10_train.py From VAE-for-Image-Generation with MIT License | 5 votes |
def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_var) * epsilon
Example #23
Source File: caltech101_128_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #24
Source File: test.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #25
Source File: test.py From VAE-for-Image-Generation with MIT License | 5 votes |
def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_var) * epsilon # note that "output_shape" isn't necessary with the TensorFlow backend # so you could write `Lambda(sampling)([z_mean, z_log_var])`
Example #26
Source File: mnist_3d_latent_space_and_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #27
Source File: caltech101_128_train.py From VAE-for-Image-Generation with MIT License | 5 votes |
def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std) return z_mean + K.exp(z_log_var) * epsilon
Example #28
Source File: mnist_2d_latent_space_and_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #29
Source File: caltech101_92_generate.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean_squash): x = K.flatten(x) x_decoded_mean_squash = K.flatten(x_decoded_mean_squash) xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)
Example #30
Source File: mnist_train.py From VAE-for-Image-Generation with MIT License | 5 votes |
def vae_loss(self, x, x_decoded_mean): xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss)