Python keras.backend.set_session() Examples

The following are 30 code examples of keras.backend.set_session(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.backend , or try the search function .
Example #1
Source File: ddcn.py    From ddan with MIT License 6 votes vote down vote up
def __init__(self, nfeatures=50, arch=[8, 'act'], mmd_layer_idx=[1],
        batch_size=16, supervised=False, confusion=0.0, confusion_incr=1e-3, confusion_max=1,
        val_data=None, validate_every=1, 
        activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, verbose=True):

        self.batch_size = batch_size
        self.epochs = epochs
        self.validate_every = validate_every
        self.supervised = supervised
        self.verbose = verbose

        if val_data is None:
            self.validate_every = 0
        else:
            self.Xval = val_data[0]
            self.yval = val_data[1]

        self._build_model(nfeatures, arch, supervised, confusion, confusion_incr, 
            confusion_max, activations, noise, droprate, mmd_layer_idx, optimizer)

        self.sess = tf.Session()
        K.set_session(self.sess)
        self.sess.run(tf.global_variables_initializer()) 
Example #2
Source File: workers.py    From dist-keras with GNU General Public License v3.0 6 votes vote down vote up
def prepare_model(self):
        """Prepares the model for training."""
        # Set the Keras directory.
        set_keras_base_directory()
        if K.backend() == 'tensorflow':
            # set GPU option allow_growth to False for GPU-enabled tensorflow
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = False
            sess = tf.Session(config=config)
            K.set_session(sess)

        # Deserialize the Keras model.
        self.model = deserialize_keras_model(self.model)
        self.optimizer = deserialize(self.optimizer)
        # Compile the model with the specified loss and optimizer.
        self.model.compile(loss=self.loss, loss_weights = self.loss_weights, 
            optimizer=self.optimizer, metrics=self.metrics) 
Example #3
Source File: actor_network.py    From costar_plan with Apache License 2.0 6 votes vote down vote up
def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE, convolutional=False, output_activation='sigmoid'):
        self.sess = sess
        self.BATCH_SIZE = BATCH_SIZE
        self.TAU = TAU
        self.LEARNING_RATE = LEARNING_RATE
        self.convolutional = convolutional
        self.output_activation = output_activation

        #K.set_session(sess)

        #Now create the model
        self.model , self.weights, self.state = self.create_actor_network(state_size, action_size)   
        self.target_model, self.target_weights, self.target_state = self.create_actor_network(state_size, action_size) 
        self.action_gradient = tf.placeholder(tf.float32,[None, action_size])
        self.params_grad = tf.gradients(self.model.output, self.weights, -self.action_gradient)
        grads = zip(self.params_grad, self.weights)
        self.optimize = tf.train.AdamOptimizer(LEARNING_RATE).apply_gradients(grads)
        init_op = tf.global_variables_initializer()
        self.sess.run(init_op) 
Example #4
Source File: critic_network.py    From costar_plan with Apache License 2.0 6 votes vote down vote up
def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE, convolutional=False):
        self.sess = sess
        self.BATCH_SIZE = BATCH_SIZE
        self.TAU = TAU
        self.LEARNING_RATE = LEARNING_RATE
        self.action_size = action_size
        self.convolutional = convolutional
        
        #K.set_session(sess)

        #Now create the model
        self.model, self.action, self.state = self.create_critic_network(state_size, action_size)  
        self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)  
        self.action_grads = tf.gradients(self.model.output, self.action)  #GRADIENTS for policy update
        init_op = tf.global_variables_initializer()
        self.sess.run(init_op) 
Example #5
Source File: cpu.py    From costar_plan with Apache License 2.0 6 votes vote down vote up
def ConfigureGPU(args):
    cpu = True if 'cpu' in args and args['cpu'] else False

    fraction = 1
    if 'gpu_fraction' in args and args['gpu_fraction']:
        fraction = args['gpu_fraction']

    if fraction < 1. or cpu:
        import tensorflow as tf
        import keras.backend as K
        
        if cpu:
            config = tf.ConfigProto(
                device_count={'GPU': 0}
            )
            sess = tf.Session(config=config)
        else:
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=fraction)
            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        K.set_session(sess) 
Example #6
Source File: gpu_utils.py    From talos with MIT License 6 votes vote down vote up
def parallel_gpu_jobs(allow_growth=True, fraction=.5):

    '''Sets the max used memory as a fraction for tensorflow
    backend

    allow_growth :: True of False

    fraction :: a float value (e.g. 0.5 means 4gb out of 8gb)

    '''

    import keras.backend as K
    import tensorflow as tf

    gpu_options = tf.GPUOptions(allow_growth=allow_growth,
                                  per_process_gpu_memory_fraction=fraction)
    config = tf.ConfigProto(gpu_options=gpu_options)
    session = tf.Session(config=config)
    K.set_session(session) 
Example #7
Source File: device_utils.py    From keras-text-summarization with MIT License 6 votes vote down vote up
def init_devices(device_type=None):
    if device_type is None:
        device_type = 'cpu'

    num_cores = 4

    if device_type == 'gpu':
        num_GPU = 1
        num_CPU = 1
    else:
        num_CPU = 1
        num_GPU = 0

    config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,
                            inter_op_parallelism_threads=num_cores, allow_soft_placement=True,
                            device_count={'CPU': num_CPU, 'GPU': num_GPU})
    session = tf.Session(config=config)
    K.set_session(session) 
Example #8
Source File: exp_epic_kitchens.py    From videograph with GNU General Public License v3.0 6 votes vote down vote up
def __start_train_model_on_video_frames_videograph(n_epochs, n_timesteps, n_centroids, timestamp, is_resume_training, start_epoch_num):
    # configure the gpu to be used by keras
    gpu_core_id = 3
    device_id = '/gpu:%d' % gpu_core_id

    # with graph.as_default():
    # with session.as_default():

    graph = tf.Graph()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    sess = tf.Session(config=config, graph=graph)
    K.set_session(sess)
    with sess:
        with tf.device(device_id):
            __train_model_on_video_frames_videograph(n_epochs, n_timesteps, n_centroids, timestamp, is_resume_training, start_epoch_num) 
Example #9
Source File: exp_epic_kitchens.py    From videograph with GNU General Public License v3.0 6 votes vote down vote up
def __start_train_model_on_video_frames_backbone_i3d_keras(n_epochs, starting_epoch_num, n_frames_per_video, n_instances, instance_num):
    # configure the gpu to be used by keras
    gpu_core_id = instance_num - 1
    device_id = '/gpu:%d' % gpu_core_id

    assert instance_num in [1, 2, 3], 'Sorry, wrong instance number: %d' % (instance_num)

    graph = tf.Graph()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    sess = tf.Session(config=config, graph=graph)
    K.set_session(sess)
    with sess:
        with tf.device(device_id):
            __train_model_on_video_frames_backbone_i3d_keras(n_epochs, starting_epoch_num, n_frames_per_video, n_instances, instance_num) 
Example #10
Source File: breakout_a3c.py    From reinforcement-learning with MIT License 6 votes vote down vote up
def __init__(self, action_size):
        # environment settings
        self.state_size = (84, 84, 4)
        self.action_size = action_size

        self.discount_factor = 0.99
        self.no_op_steps = 30

        # optimizer parameters
        self.actor_lr = 2.5e-4
        self.critic_lr = 2.5e-4
        self.threads = 8

        # create model for actor and critic network
        self.actor, self.critic = self.build_model()

        # method for training actor and critic network
        self.optimizer = [self.actor_optimizer(), self.critic_optimizer()]

        self.sess = tf.InteractiveSession()
        K.set_session(self.sess)
        self.sess.run(tf.global_variables_initializer())

        self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()
        self.summary_writer = tf.summary.FileWriter('summary/breakout_a3c', self.sess.graph) 
Example #11
Source File: tf_util.py    From connect4-alpha-zero with MIT License 6 votes vote down vote up
def set_session_config(per_process_gpu_memory_fraction=None, allow_growth=None):
    """

    :param allow_growth: When necessary, reserve memory
    :param float per_process_gpu_memory_fraction: specify GPU memory usage as 0 to 1

    :return:
    """
    import tensorflow as tf
    import keras.backend as K

    config = tf.ConfigProto(
        gpu_options=tf.GPUOptions(
            per_process_gpu_memory_fraction=per_process_gpu_memory_fraction,
            allow_growth=allow_growth,
        )
    )
    sess = tf.Session(config=config)
    K.set_session(sess) 
Example #12
Source File: util.py    From openai_lab with MIT License 6 votes vote down vote up
def configure_hardware(RAND_SEED):
    '''configure rand seed, GPU'''
    from keras import backend as K
    if K.backend() == 'tensorflow':
        K.tf.set_random_seed(RAND_SEED)
    else:
        K.theano.tensor.shared_randomstreams.RandomStreams(seed=RAND_SEED)

    if K.backend() != 'tensorflow':
        # GPU config for tf only
        return

    process_num = PARALLEL_PROCESS_NUM if args.param_selection else 1
    tf = K.tf
    gpu_options = tf.GPUOptions(
        allow_growth=True,
        per_process_gpu_memory_fraction=1./float(process_num))
    config = tf.ConfigProto(
        gpu_options=gpu_options,
        allow_soft_placement=True)
    sess = tf.Session(config=config)
    K.set_session(sess)
    return sess 
Example #13
Source File: CriticNetwork.py    From a-deep-rl-approach-for-sdn-routing-optimization with MIT License 6 votes vote down vote up
def __init__(self, sess, state_size, action_size, DDPG_config):
        self.HIDDEN1_UNITS = DDPG_config['HIDDEN1_UNITS']
        self.HIDDEN2_UNITS = DDPG_config['HIDDEN2_UNITS']

        self.sess = sess
        self.BATCH_SIZE = DDPG_config['BATCH_SIZE']
        self.TAU = DDPG_config['TAU']
        self.LEARNING_RATE = DDPG_config['LRC']
        self.action_size = action_size

        self.h_acti = relu
        if DDPG_config['HACTI'] == 'selu':
            self.h_acti = selu

        K.set_session(sess)

        #Now create the model
        self.model, self.action, self.state = self.create_critic_network(state_size, action_size)
        self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)
        self.action_grads = tf.gradients(self.model.output, self.action)  #GRADIENTS for policy update
        self.sess.run(tf.global_variables_initializer()) 
Example #14
Source File: device_utils.py    From keras-video-classifier with MIT License 6 votes vote down vote up
def init_devices(device_type=None):
    if device_type is None:
        device_type = 'cpu'

    num_cores = 4

    if device_type == 'gpu':
        num_GPU = 1
        num_CPU = 1
    else:
        num_CPU = 1
        num_GPU = 0

    config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,
                            inter_op_parallelism_threads=num_cores, allow_soft_placement=True,
                            device_count={'CPU': num_CPU, 'GPU': num_GPU})
    session = tf.Session(config=config)
    K.set_session(session) 
Example #15
Source File: model.py    From mpi_learn with GNU General Public License v3.0 6 votes vote down vote up
def build_model(self, local_session = True):
        import keras.backend as K

        if local_session:
            graph = K.tf.Graph()
            session = K.tf.Session(graph=graph, config=K.tf.ConfigProto(
                allow_soft_placement=True, log_device_placement=False,
                gpu_options=K.tf.GPUOptions(
                        per_process_gpu_memory_fraction=1./self.comm.Get_size()) ) )

            with graph.as_default():
                with session.as_default():
                    import keras.backend as K
                    ret_model = self.build_model_aux()
                    ret_model.session = session
                    ret_model.graph = graph
                    return ret_model
        else:
            K.set_session( K.tf.Session( config=K.tf.ConfigProto(
                allow_soft_placement=True, log_device_placement=False,
                gpu_options=K.tf.GPUOptions(
                    per_process_gpu_memory_fraction=1./self.comm.Get_size()) ) ) )
            return self.build_model_aux() 
Example #16
Source File: nn_model.py    From mercari-price-suggestion with MIT License 6 votes vote down vote up
def __init__(self, train_df, word_count, batch_size, epochs):
        tf.set_random_seed(4)
        session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8)
        backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf))

        self.batch_size = batch_size
        self.epochs = epochs

        self.max_name_seq = 10
        self.max_item_desc_seq = 75
        self.max_text = word_count + 1
        self.max_brand = np.max(train_df.brand_name.max()) + 1
        self.max_condition = np.max(train_df.item_condition_id.max()) + 1
        self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1
        self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1
        self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1 
Example #17
Source File: dann.py    From ddan with MIT License 6 votes vote down vote up
def __init__(self, nfeatures=50, arch_shared=[32, 'act'], arch_domain=[8, 'act'], arch_clf=[], 
        batch_size=16, supervised=False, val_data=None, validate_every=1, 
        activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, stop_at_target_loss=0.0):

        self.batch_size = batch_size
        self.epochs = epochs
        self.validate_every = validate_every
        self.stop_at_target_loss = stop_at_target_loss

        if val_data is None:
            validate_every = 0
        else:
            self.Xval = val_data[0]
            self.yval = val_data[1]

        self._build_model(nfeatures, arch_shared, arch_domain, arch_clf, 
            activations, supervised, noise, droprate, optimizer)

        self.sess = tf.Session()
        K.set_session(self.sess)
        self.sess.run(tf.global_variables_initializer()) 
Example #18
Source File: fttl.py    From ddan with MIT License 6 votes vote down vote up
def __init__(self, nfeatures=50, arch=[8, 'act', 8, 'act'], fine_tune_layers=[2, 3], batch_size=16, 
        val_data=None, validate_every=1, activations='relu', epochs=5000, epochs_finetune=5000, optimizer=None, optimizer_finetune=None,
        noise=0.0, droprate=0.0, verbose=True, stop_at_target_loss=0):

        self.batch_size = batch_size
        self.validate_every = validate_every
        self.epochs = epochs
        self.epochs_finetune = epochs_finetune
        self.verbose = verbose
        self.stop_at_target_loss = stop_at_target_loss
        if val_data is None:
            self.validate_every = 0
        else:
            self.Xval = val_data[0]
            self.yval = val_data[1]

        self._build_model(nfeatures, arch, activations, noise, droprate, optimizer, optimizer_finetune, fine_tune_layers)

        self.sess = tf.Session()
        K.set_session(self.sess)
        self.sess.run(tf.global_variables_initializer()) 
Example #19
Source File: deepcoral.py    From ddan with MIT License 6 votes vote down vote up
def __init__(self, nfeatures=50, arch=[8, 'act'], coral_layer_idx=[1],
        batch_size=16, supervised=False, confusion=1e4, confusion_incr=50, confusion_max=1e9,
        val_data=None, validate_every=1, 
        activations='relu', epochs=1000, optimizer=None, noise=0.0, droprate=0.0, verbose=True):

        self.batch_size = batch_size
        self.epochs = epochs
        self.validate_every = validate_every
        self.supervised = supervised
        self.verbose = verbose

        if val_data is None:
            self.validate_every = 0
        else:
            self.Xval = val_data[0]
            self.yval = val_data[1]

        self._build_model(nfeatures, arch, supervised, confusion, confusion_incr, 
            confusion_max, activations, noise, droprate, coral_layer_idx, optimizer)

        self.sess = tf.Session()
        K.set_session(self.sess)
        self.sess.run(tf.global_variables_initializer()) 
Example #20
Source File: ds_breakfast.py    From videograph with GNU General Public License v3.0 5 votes vote down vote up
def __config_session_for_keras(gpu_core_id):
    import keras.backend as K
    import tensorflow as tf

    K.clear_session()
    config = tf.ConfigProto()
    config.gpu_options.visible_device_list = str(gpu_core_id)
    config.gpu_options.allow_growth = True
    session = tf.Session(config=config)
    K.set_session(session)

# endregion

# region 4.0 Pickle Features 
Example #21
Source File: DHNE.py    From OpenHINE with MIT License 5 votes vote down vote up
def Process(dataset,dim_feature,embedding_size,hidden_size,learning_rate,alpha,batch_size,num_neg_samples,epochs_to_train,output_embfold,output_modelfold,prefix_path, reflect):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    K.set_session(tf.Session(config=config))
    h = hypergraph(dim_feature,embedding_size,hidden_size,learning_rate,alpha,batch_size,num_neg_samples,epochs_to_train,output_embfold,output_modelfold,prefix_path,reflect)
    begin = time.time()
    h.train(dataset)
    end = time.time()
    print("time, ", end-begin)
    # h.save()
    h.save_embeddings(dataset)
    K.clear_session() 
Example #22
Source File: run_bottleneck.py    From CarND-Transfer-Learning-Lab with MIT License 5 votes vote down vote up
def main(_):

    if FLAGS.dataset == 'cifar10':
        (X_train, y_train), (_, _) = cifar10.load_data()
        X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=0)
    else:
        with open('data/train.p', mode='rb') as f:
            train = pickle.load(f)
        X_train, X_val, y_train, y_val = train_test_split(train['features'], train['labels'], test_size=0.33, random_state=0)

    train_output_file = "{}_{}_{}.p".format(FLAGS.network, FLAGS.dataset, 'bottleneck_features_train')
    validation_output_file = "{}_{}_{}.p".format(FLAGS.network, FLAGS.dataset, 'bottleneck_features_validation')

    print("Resizing to", (w, h, ch))
    print("Saving to ...")
    print(train_output_file)
    print(validation_output_file)

    with tf.Session() as sess:
        K.set_session(sess)
        K.set_learning_phase(1)

        model = create_model()

        print('Bottleneck training')
        train_gen = gen(sess, X_train, y_train, batch_size)
        bottleneck_features_train = model.predict_generator(train_gen(), X_train.shape[0])
        data = {'features': bottleneck_features_train, 'labels': y_train}
        pickle.dump(data, open(train_output_file, 'wb'))

        print('Bottleneck validation')
        val_gen = gen(sess, X_val, y_val, batch_size)
        bottleneck_features_validation = model.predict_generator(val_gen(), X_val.shape[0])
        data = {'features': bottleneck_features_validation, 'labels': y_val}
        pickle.dump(data, open(validation_output_file, 'wb')) 
Example #23
Source File: spline.py    From audio-super-res with MIT License 5 votes vote down vote up
def create_model(self, n_dim, r):
    # load inputs
    X, _, _ = self.inputs
    K.set_session(self.sess)

    with tf.name_scope('generator'):
      x = X
      return x 
Example #24
Source File: model2.py    From audio-super-res with MIT License 5 votes vote down vote up
def __init__(self, r=2, opt_params=default_opt):

    gpu_options = tf.GPUOptions(allow_growth=True)
    self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True))
    K.set_session(self.sess) # pass keras the session
    
    # save params
    self.opt_params = opt_params
    self.layers     = opt_params['layers'] 
Example #25
Source File: deep_mil.py    From TensorFlow-MIL with MIT License 5 votes vote down vote up
def main():
    # Parse Arguments
    parser = argparse.ArgumentParser(description='Deep MIL Arguments')
    parser.add_argument('-e', '--NUM_EPOCHS', default=1, type=int)  # Number of epochs for which to train the model
    parser.add_argument('-r', '--SEED', default=123)  # specify the seed
    parser.add_argument('-b', '--BATCH_SIZE', default=128, type=int)  # batch size for training
    parser.add_argument('-s', '--SAVE_DIRECTORY', default='conv_mil/', type=str)  # Where to save model
    parser.add_argument('-m', '--MODEL_NAME', default='model.h5', type=str)  # To save individual run
    parser.add_argument('-t', '--TRAIN', default=1, type=int)  # whether to train (1) or load model (0)
    parser.add_argument('-v', '--VISUALIZE', default=1, type=int)  # whether to visualize the output
    flags = vars(parser.parse_args())

    # Build MNIST dataset
    dataset = Mnist()

    # Make save directory if it doesn't exist
    if not os.path.exists(flags['SAVE_DIRECTORY']):
        os.makedirs(flags['SAVE_DIRECTORY'])

    filepath = os.path.join(flags['SAVE_DIRECTORY'], flags['MODEL_NAME'])
    with tf.Graph().as_default():
        with tf.Session() as sess:
            K.set_session(sess)

            # Train or load model
            if flags['TRAIN']:
                model = train(epochs=flags['NUM_EPOCHS'],
                              seed=flags['SEED'],
                              batch_size=flags['BATCH_SIZE'],
                              dataset=dataset)
                model.save(filepath)
            else:
                model = load_model(filepath)

            # Visualize with tf_cnnvis
            visualize(sess, model, dataset) 
Example #26
Source File: utils.py    From convnet-study with MIT License 5 votes vote down vote up
def config_gpu(gpu, allow_growth):
    # Choosing gpu
    if gpu == '-1':
        config = tf.ConfigProto(device_count ={'GPU': 0})
    else:
        if gpu == 'all' or gpu == '':
            gpu = ''
        config = tf.ConfigProto()
        config.gpu_options.visible_device_list = gpu
    if allow_growth == True:
        config.gpu_options.allow_growth = True
    session = tf.Session(config=config)
    K.set_session(session) 
Example #27
Source File: train_mrcnn.py    From maskrcnn with MIT License 5 votes vote down vote up
def set_debugger_session():
    sess = K.get_session()
    sess = tf_debug.LocalCLIDebugWrapperSession(sess)
    sess.add_tensor_filter('name_filter', name_filter)
    K.set_session(sess) 
Example #28
Source File: ActorNetwork.py    From a-deep-rl-approach-for-sdn-routing-optimization with MIT License 5 votes vote down vote up
def __init__(self, sess, state_size, action_size, DDPG_config):
        self.HIDDEN1_UNITS = DDPG_config['HIDDEN1_UNITS']
        self.HIDDEN2_UNITS = DDPG_config['HIDDEN2_UNITS']

        self.sess = sess
        self.BATCH_SIZE = DDPG_config['BATCH_SIZE']
        self.TAU = DDPG_config['TAU']
        self.LEARNING_RATE = DDPG_config['LRA']
        self.ACTUM = DDPG_config['ACTUM']

        if self.ACTUM == 'NEW':
            self.acti = 'sigmoid'
        elif self.ACTUM == 'DELTA':
            self.acti = 'tanh'

        self.h_acti = relu
        if DDPG_config['HACTI'] == 'selu':
            self.h_acti = selu

        K.set_session(sess)

        #Now create the model
        self.model, self.weights, self.state = self.create_actor_network(state_size, action_size)
        self.target_model, self.target_weights, self.target_state = self.create_actor_network(state_size, action_size)
        self.action_gradient = tf.placeholder(tf.float32, [None, action_size])
        self.params_grad = tf.gradients(self.model.output, self.weights, -self.action_gradient)
        grads = zip(self.params_grad, self.weights)
        self.optimize = tf.train.AdamOptimizer(self.LEARNING_RATE).apply_gradients(grads)
        self.sess.run(tf.global_variables_initializer()) 
Example #29
Source File: libraries.py    From vergeml with MIT License 5 votes vote down vote up
def setup(env):
        stderr = sys.stderr
        sys.stderr = open(os.devnull, "w")
        # pylint: disable=W0612
        try:
            import keras
        except Exception as e:
            raise e
        finally:
            sys.stderr = stderr

        from keras import backend as K
        if K.backend() == 'tensorflow':
            TensorFlowLibrary.setup(env)
            K.set_session(TensorFlowLibrary.create_session(env)) 
Example #30
Source File: triplet_loss_test.py    From bootcamp with Apache License 2.0 5 votes vote down vote up
def test_1(self):
        # ANCHOR 1 (512,), index = 0
        # ANCHOR 2 (512,), index = 1
        # ANCHOR 3 (512,), index = 2
        # ANCHOR 4 (512,), index = 3
        # ANCHOR 5 (512,), index = 4
        # ANCHOR 6 (512,), index = 5
        # POS EX 1 (512,), index = 6
        # POS EX 2 (512,), index = 7
        # POS EX 3 (512,), index = 8
        # POS EX 4 (512,), index = 9
        # POS EX 5 (512,), index = 10
        # POS EX 6 (512,), index = 11
        # NEG EX 1 (512,), index = 12
        # NEG EX 2 (512,), index = 13
        # NEG EX 3 (512,), index = 14
        # NEG EX 4 (512,), index = 15
        # NEG EX 5 (512,), index = 16
        # NEG EX 6 (512,), index = 17

        x2 = 1
        sess = tf.InteractiveSession()
        K.set_session(sess)

        highest_loss = deep_speaker_loss(tf.constant(opposite_positive_equal_negative_batch()), x2).eval()
        high_loss = deep_speaker_loss(tf.constant(random_positive_random_negative_batch()), x2).eval()
        low_loss = deep_speaker_loss(tf.constant(equal_positive_random_negative_batch()), x2).eval()
        lowest_loss = deep_speaker_loss(tf.constant(equal_positive_opposite_negative_batch()), x2).eval()

        self.assertTrue(highest_loss >= high_loss >= low_loss >= lowest_loss)