Python keras.backend.shape() Examples

The following are 30 code examples of keras.backend.shape(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.backend , or try the search function .
Example #1
Source File: timedistributed.py    From fancy-cnn with MIT License 7 votes vote down vote up
def get_output(self, train=False):
        def format_shape(shape):
            if K._BACKEND == 'tensorflow':
                def trf(x):
                    try:
                        return int(x)
                    except TypeError:
                        return x

                return map(trf, shape)
            return shape

        X = self.get_input(train)

        in_shape = format_shape(K.shape(X))
        batch_flatten_len = K.prod(in_shape[:2])
        cast_in_shape = (batch_flatten_len, ) + tuple(in_shape[i] for i in range(2, K.ndim(X)))
        
        pre_outs = self.layer(K.reshape(X, cast_in_shape))
        
        out_shape = format_shape(K.shape(pre_outs))
        cast_out_shape = (in_shape[0], in_shape[1]) + tuple(out_shape[i] for i in range(1, K.ndim(pre_outs)))
        
        outputs = K.reshape(pre_outs, cast_out_shape)
        return outputs 
Example #2
Source File: model.py    From PanopticSegmentation with MIT License 6 votes vote down vote up
def get_anchors(self, image_shape):
        """Returns anchor pyramid for the given image size."""
        backbone_shapes = compute_backbone_shapes(self.config, image_shape)
        # Cache anchors and reuse if image shape is the same
        if not hasattr(self, "_anchor_cache"):
            self._anchor_cache = {}
        if not tuple(image_shape) in self._anchor_cache:
            # Generate Anchors
            a = utils.generate_pyramid_anchors(
                self.config.RPN_ANCHOR_SCALES,
                self.config.RPN_ANCHOR_RATIOS,
                backbone_shapes,
                self.config.BACKBONE_STRIDES,
                self.config.RPN_ANCHOR_STRIDE)
            # Keep a copy of the latest anchors in pixel coordinates because
            # it's used in inspect_model notebooks.
            # TODO: Remove this after the notebook are refactored to not use it
            self.anchors = a
            # Normalize coordinates
            self._anchor_cache[tuple(image_shape)] = utils.norm_boxes(a, image_shape[:2])
        return self._anchor_cache[tuple(image_shape)] 
Example #3
Source File: attention.py    From keras-utility-layer-collection with MIT License 6 votes vote down vote up
def step(self, x, states):   
        h = states[0]
        # states[1] necessary?

        # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
        total_x_prod = states[-1]
        # comes from the constants (equals the input sequence)
        X = states[-2]
        
        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        x_weighted = K.sum(attention * X, [1])

        x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
        
        h, new_states = self.layer.cell.call(x, states[:-2])
        
        return h, new_states 
Example #4
Source File: attention.py    From keras-utility-layer-collection with MIT License 6 votes vote down vote up
def build(self, input_shape):
        self._validate_input_shape(input_shape)

        self.input_spec = InputSpec(shape=input_shape)
        
        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True
            
        input_dim = input_shape[-1]

        if self.layer.return_sequences:
            output_dim = self.layer.compute_output_shape(input_shape)[0][-1]
        else:
            output_dim = self.layer.compute_output_shape(input_shape)[-1]
      
        self._W1 = self.add_weight(shape=(input_dim, input_dim), name="{}_W1".format(self.name), initializer=self.weight_initializer)
        self._W2 = self.add_weight(shape=(output_dim, input_dim), name="{}_W2".format(self.name), initializer=self.weight_initializer)
        self._W3 = self.add_weight(shape=(2*input_dim, input_dim), name="{}_W3".format(self.name), initializer=self.weight_initializer)
        self._b2 = self.add_weight(shape=(input_dim,), name="{}_b2".format(self.name), initializer=self.weight_initializer)
        self._b3 = self.add_weight(shape=(input_dim,), name="{}_b3".format(self.name), initializer=self.weight_initializer)
        self._V = self.add_weight(shape=(input_dim,1), name="{}_V".format(self.name), initializer=self.weight_initializer)
        
        super(AttentionRNNWrapper, self).build() 
Example #5
Source File: model.py    From models with MIT License 6 votes vote down vote up
def predict_on_batch(self, inputs):
            if inputs.shape == (2,):
                inputs = inputs[np.newaxis, :]
            # Encode
            max_len = len(max(inputs, key=len))
            one_hot_ref =  self.encode(inputs[:,0])
            one_hot_alt = self.encode(inputs[:,1])
            # Construct dummy library indicator
            indicator = np.zeros((inputs.shape[0],2))
            indicator[:,1] = 1
            # Compute fold change for all three frames
            fc_changes = []
            for shift in range(3):
                if shift > 0:
                    shifter = np.zeros((one_hot_ref.shape[0],1,4))
                    one_hot_ref = np.concatenate([one_hot_ref, shifter], axis=1)
                    one_hot_alt = np.concatenate([one_hot_alt, shifter], axis=1)
                pred_ref = self.model.predict_on_batch([one_hot_ref, indicator]).reshape(-1)
                pred_variant = self.model.predict_on_batch([one_hot_alt, indicator]).reshape(-1)
                fc_changes.append(np.log2(pred_variant/pred_ref))
            # Return
            return {"mrl_fold_change":fc_changes[0], 
                    "shift_1":fc_changes[1],
                    "shift_2":fc_changes[2]} 
Example #6
Source File: attention.py    From keras-utility-layer-collection with MIT License 6 votes vote down vote up
def step(self, x, states):  
        h = states[0]
        # states[1] necessary?
        
        # comes from the constants
        X_static = states[-2]
        # equals K.dot(static_x, self._W1) + self._b2 with X.shape=[bs, L, static_input_dim]
        total_x_static_prod = states[-1]

        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_static_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        static_x_weighted = K.sum(attention * X_static, [1])
        
        x = K.dot(K.concatenate([x, static_x_weighted], 1), self._W3) + self._b3

        h, new_states = self.layer.cell.call(x, states[:-2])
        
        # append attention to the states to "smuggle" it out of the RNN wrapper
        attention = K.squeeze(attention, -1)
        h = K.concatenate([h, attention])

        return h, new_states 
Example #7
Source File: contrib.py    From steppy-toolkit with MIT License 6 votes vote down vote up
def call(self, x, mask=None):
        # computes a probability distribution over the timesteps
        # uses 'max trick' for numerical stability
        # reshape is done to avoid issue with Tensorflow
        # and 1-dimensional weights
        logits = K.dot(x, self.W)
        x_shape = K.shape(x)
        logits = K.reshape(logits, (x_shape[0], x_shape[1]))
        ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))

        # masked timesteps have zero weight
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            ai = ai * mask
        att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
        weighted_input = x * K.expand_dims(att_weights)
        result = K.sum(weighted_input, axis=1)
        if self.return_attention:
            return [result, att_weights]
        return result 
Example #8
Source File: capsule.py    From CapsNet with MIT License 6 votes vote down vote up
def call(self, inputs, **kwargs):
        # (batch_size, 1, input_num_capsule, input_dim_capsule)
        expand_inputs = K.expand_dims(inputs, axis=1)
        # (batch_size, num_capsule, input_num_capsule, input_dim_capsule)
        expand_inputs = K.tile(expand_inputs, (1, self.num_capsule, 1, 1))
        # (batch_size, num_capsule, input_num_capsule, dim_capsule)
        u_hat = K.map_fn(lambda x: K.batch_dot(x, self.W, axes=[2, 3]), expand_inputs)

        if self.num_routing <= 0:
            self.num_routing = 3
        # (batch_size, num_capsule, input_num_capsule)
        b = K.zeros((K.shape(u_hat)[0], self.num_capsule, self.input_num_capsule))
        for i in xrange(self.num_routing):
            # (batch_size, num_capsule, input_num_capsule)
            c = softmax(b, axis=1)
            # (batch_size, num_capsule, dim_capsule)
            s = K.batch_dot(c, u_hat, axes=[2, 2])
            squashed_s = squash(s)
            if i < self.num_routing - 1:
                # (batch_size, num_capsule, input_num_capsule)
                b += K.batch_dot(squashed_s, u_hat, axes=[2, 3])
        return squashed_s 
Example #9
Source File: transform_rnn.py    From View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition with MIT License 6 votes vote down vote up
def call(self,x,mask=None):
        conv_input,theta = x
        s = theta.shape
        theta = T.reshape(theta,[-1,s[2]])
        m = K.not_equal(conv_input,0.)

        #### For translation
        trans = _trans(theta)
        output = _transform_trans(trans, conv_input)
        output = output * K.cast(m,K.floatx())

        ### For rotation
        M = _fusion(theta)
        output = _transform_rot(M,output)

        return output 
Example #10
Source File: transform_rnn.py    From View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition with MIT License 6 votes vote down vote up
def call(self,x,training=None):
        deta1 = 0.3
        deta2 = 0.3
        deta3 = 0.3
        seed = np.random.randint(1, 10e6)
        rng = RandomStreams(seed=seed)
        theta1 = rng.uniform(size=(x.shape[0],1),low=-deta1,high=deta1,dtype='float32')
        theta2 = rng.uniform(size=(x.shape[0],1),low=-deta2,high=deta2,dtype='float32')
        theta3 = rng.uniform(size=(x.shape[0],1),low=-deta3,high=deta3,dtype='float32')
        theta = K.concatenate([theta1,theta2,theta3],axis=-1)
        theta = K.tile(theta,x.shape[1])
        theta = theta.reshape((x.shape[0], x.shape[1], 3))

        theta = theta.reshape((theta.shape[0]*theta.shape[1], theta.shape[2]))
        M = _fusion(theta)
        output = _transform_rot(M, x)

        return K.in_train_phase(output,x,training = training) 
Example #11
Source File: model.py    From dataiku-contrib with Apache License 2.0 6 votes vote down vote up
def clip_boxes_graph(boxes, window):
    """
    boxes: [N, (y1, x1, y2, x2)]
    window: [4] in the form y1, x1, y2, x2
    """
    # Split
    wy1, wx1, wy2, wx2 = tf.split(window, 4)
    y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
    # Clip
    y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
    x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
    y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
    x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
    clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
    clipped.set_shape((clipped.shape[0], 4))
    return clipped 
Example #12
Source File: model.py    From keras-yolo3 with MIT License 6 votes vote down vote up
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
Example #13
Source File: model.py    From dataiku-contrib with Apache License 2.0 6 votes vote down vote up
def get_anchors(self, image_shape):
        """Returns anchor pyramid for the given image size."""
        backbone_shapes = compute_backbone_shapes(self.config, image_shape)
        # Cache anchors and reuse if image shape is the same
        if not hasattr(self, "_anchor_cache"):
            self._anchor_cache = {}
        if not tuple(image_shape) in self._anchor_cache:
            # Generate Anchors
            a = utils.generate_pyramid_anchors(
                self.config.RPN_ANCHOR_SCALES,
                self.config.RPN_ANCHOR_RATIOS,
                backbone_shapes,
                self.config.BACKBONE_STRIDES,
                self.config.RPN_ANCHOR_STRIDE)
            # Keep a copy of the latest anchors in pixel coordinates because
            # it's used in inspect_model notebooks.
            # TODO: Remove this after the notebook are refactored to not use it
            self.anchors = a
            # Normalize coordinates
            self._anchor_cache[tuple(image_shape)] = utils.norm_boxes(a, image_shape[:2])
        return self._anchor_cache[tuple(image_shape)] 
Example #14
Source File: model.py    From PanopticSegmentation with MIT License 6 votes vote down vote up
def build_rpn_model(anchor_stride, anchors_per_location, depth):
    """Builds a Keras model of the Region Proposal Network.
    It wraps the RPN graph so it can be used multiple times with shared
    weights.

    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).
    depth: Depth of the backbone feature map.

    Returns a Keras Model object. The model outputs, when called, are:
    rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax)
    rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities.
    rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be
                applied to anchors.
    """
    input_feature_map = KL.Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
    return KM.Model([input_feature_map], outputs, name="rpn_model")


############################################################
#  Feature Pyramid Network Heads
############################################################ 
Example #15
Source File: model.py    From PanopticSegmentation with MIT License 6 votes vote down vote up
def clip_boxes_graph(boxes, window):
    """
    boxes: [N, (y1, x1, y2, x2)]
    window: [4] in the form y1, x1, y2, x2
    """
    # Split
    wy1, wx1, wy2, wx2 = tf.split(window, 4)
    y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
    # Clip
    y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
    x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
    y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
    x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
    clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
    clipped.set_shape((clipped.shape[0], 4))
    return clipped 
Example #16
Source File: layers.py    From DeepLearn with MIT License 6 votes vote down vote up
def call(self , x, mask=None):
        
        e1=x[0].T
        e2=x[1].T
        
        batch_size = K.shape(x[0])[0]
        sim = []
        V_out = K.dot(self.V, K.concatenate([e1,e2],axis=0))     

        for i in range(self.k): 
            temp = K.batch_dot(K.dot(e1.T,self.W[i,:,:]),e2.T,axes=1)
            sim.append(temp)
        sim=K.reshape(sim,(self.k,batch_size))

        tensor_bi_product = self.activation(V_out+sim)
        tensor_bi_product = K.dot(self.U.T, tensor_bi_product).T

        return tensor_bi_product 
Example #17
Source File: layers.py    From DeepLearn with MIT License 6 votes vote down vote up
def build(self,input_shape):
        
        self.W = self.add_weight(name='w',shape=(self.k, self.d, self.d),
                                      initializer='glorot_uniform',trainable=True)
                                      #initializer='ones',trainable=False)
        
        self.V = self.add_weight(name='v',shape=(self.k, self.d*2),
                                      initializer='glorot_uniform',trainable=True)
                                    #initializer='ones',trainable=False)
                                  
        #self.b = self.add_weight(name='b',shape=(self.k,1),
        #                              initializer='glorot_uniform',trainable=True)
#                                    initializer='ones',trainable=False)
        
        self.U = self.add_weight(name='u',shape=(self.k,1),
#                                      initializer='ones',trainable=False)
                initializer='glorot_uniform',trainable=True)
                                  
        super(ntn, self).build(input_shape) 
Example #18
Source File: model.py    From vision-web-service with MIT License 6 votes vote down vote up
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
Example #19
Source File: model.py    From multi-object-tracking with GNU General Public License v3.0 6 votes vote down vote up
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
    '''Get corrected boxes'''
    box_yx = box_xy[..., ::-1]
    box_hw = box_wh[..., ::-1]
    input_shape = K.cast(input_shape, K.dtype(box_yx))
    image_shape = K.cast(image_shape, K.dtype(box_yx))
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
    offset = (input_shape-new_shape)/2./input_shape
    scale = input_shape/new_shape
    box_yx = (box_yx - offset) * scale
    box_hw *= scale

    box_mins = box_yx - (box_hw / 2.)
    box_maxes = box_yx + (box_hw / 2.)
    boxes =  K.concatenate([
        box_mins[..., 0:1],  # y_min
        box_mins[..., 1:2],  # x_min
        box_maxes[..., 0:1],  # y_max
        box_maxes[..., 1:2]  # x_max
    ])

    # Scale boxes back to original image shape.
    boxes *= K.concatenate([image_shape, image_shape])
    return boxes 
Example #20
Source File: chapter_06_001.py    From Python-Deep-Learning-SE with MIT License 6 votes vote down vote up
def sampling(args: tuple):
    """
    Reparameterization trick by sampling z from unit Gaussian
    :param args: (tensor, tensor) mean and log of variance of q(z|x)
    :returns tensor: sampled latent vector z
    """

    # unpack the input tuple
    z_mean, z_log_var = args

    # mini-batch size
    mb_size = K.shape(z_mean)[0]

    # latent space size
    dim = K.int_shape(z_mean)[1]

    # random normal vector with mean=0 and std=1.0
    epsilon = K.random_normal(shape=(mb_size, dim))

    return z_mean + K.exp(0.5 * z_log_var) * epsilon 
Example #21
Source File: model.py    From dataiku-contrib with Apache License 2.0 6 votes vote down vote up
def build_rpn_model(anchor_stride, anchors_per_location, depth):
    """Builds a Keras model of the Region Proposal Network.
    It wraps the RPN graph so it can be used multiple times with shared
    weights.
    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).
    depth: Depth of the backbone feature map.
    Returns a Keras Model object. The model outputs, when called, are:
    rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax)
    rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities.
    rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be
                applied to anchors.
    """
    input_feature_map = KL.Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
    return KM.Model([input_feature_map], outputs, name="rpn_model")


############################################################
#  Feature Pyramid Network Heads
############################################################ 
Example #22
Source File: attention.py    From keras-utility-layer-collection with MIT License 5 votes vote down vote up
def build(self, input_shape):
        super(SequenceAttention, self).build(input_shape)
        self._validate_input_shape(input_shape)
        
        self._weights = {}
        if self._similarity == self._additive_similarity:
            self._weights["w_a"] = self.add_weight(
                name='w_a', 
                shape=(input_shape[0][-1] + input_shape[1][-1], input_shape[0][-1]),
                initializer=self._kernel_initializer,
                trainable=True
            )
            
            self._weights["v_a"] = self.add_weight(
                name='v_a', 
                shape=(1, input_shape[0][-1]),
                initializer=self._kernel_initializer,
                trainable=True
            )
            
        elif self._similarity == self._multiplicative_similarity:
            self._weights["w_a"] = self.add_weight(
                name='w_a', 
                shape=(input_shape[1][-1], input_shape[0][-1]),
                initializer=self._kernel_initializer,
                trainable=True
            )

        self.built = True 
Example #23
Source File: model.py    From vision-web-service with MIT License 5 votes vote down vote up
def box_iou(b1, b2):
    '''Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    '''

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou 
Example #24
Source File: attention.py    From keras-utility-layer-collection with MIT License 5 votes vote down vote up
def call(self, x, mask=None):
        q, k, v = x
        d_k = q.shape.as_list()[2]

        # in pure tensorflow:
        # weights = tf.matmul(x_batch, tf.transpose(y_batch, perm=[0, 2, 1]))
        # normalized_weights = tf.nn.softmax(weights/scaling)
        # output = tf.matmul(normalized_weights, x_batch)
        
        weights = K.batch_dot(q,  k, axes=[2, 2])

        if mask is not None:
            # add mask weights
            if isinstance(mask, (list, tuple)):
                if len(mask) > 0:
                    raise ValueError("mask can only be a Tensor or a list of length 1 containing a tensor.")

                mask = mask[0]

            weights += -1e10*(1-mask)

        normalized_weights = K.softmax(weights / np.sqrt(d_k))
        output = K.batch_dot(normalized_weights, v)
        
        if self._return_attention:
            return [output, normalized_weights]
        else:
            return output 
Example #25
Source File: model.py    From vision-web-service with MIT License 5 votes vote down vote up
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs 
Example #26
Source File: model.py    From multi-object-tracking with GNU General Public License v3.0 5 votes vote down vote up
def box_iou(b1, b2):
    '''Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    '''

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou 
Example #27
Source File: attention.py    From keras-utility-layer-collection with MIT License 5 votes vote down vote up
def __call__(self, x, mask=None):
        if isinstance(x, (list, tuple)):
            self.build([it.shape for it in x])
        else:
            self.build(x.shape)

        q, k, v = x
        
        outputs = []
        attentions = []
        for i in range(self._h):
            qi = self._q_layers[i](q)
            ki = self._k_layers[i](k)
            vi = self._v_layers[i](v)
            
            if self._return_attention:
                output, attention = self._sdp_layer([qi, ki, vi], mask=mask)
                outputs.append(output)
                attentions.append(attention)
            else:
                output = self._sdp_layer([qi, ki, vi], mask=mask)
                outputs.append(output)
            
        concatenated_outputs = Concatenate()(outputs)
        output = self._output(concatenated_outputs)
        
        if self._return_attention:
            attention = Concatenate()(attentions)
            # print("attention", attention, attention.shape)
       
        if self._return_attention:
            return [output, attention]
        else:
            return output        

# https://wanasit.github.io/attention-based-sequence-to-sequence-in-keras.html
# https://arxiv.org/pdf/1508.04025.pdf 
Example #28
Source File: model.py    From multi-object-tracking with GNU General Public License v3.0 5 votes vote down vote up
def yolo_head(feats, anchors, num_classes, input_shape):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (box_xy + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
    box_wh = box_wh * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))

    return box_xy, box_wh, box_confidence, box_class_probs 
Example #29
Source File: attention.py    From keras-utility-layer-collection with MIT License 5 votes vote down vote up
def build(self, input_shape):
        self._validate_input_shape(input_shape)

        for i, x in enumerate(input_shape):
            self.input_spec[i] = InputSpec(shape=x)
        
        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True
            
        temporal_input_dim = input_shape[0][-1]
        static_input_dim = input_shape[1][-1]

        if self.layer.return_sequences:
            output_dim = self.layer.compute_output_shape(input_shape[0])[0][-1]
        else:
            output_dim = self.layer.compute_output_shape(input_shape[0])[-1]
      
        self._W1 = self.add_weight(shape=(static_input_dim, temporal_input_dim), name="{}_W1".format(self.name), initializer=self.weight_initializer)
        self._W2 = self.add_weight(shape=(output_dim, temporal_input_dim), name="{}_W2".format(self.name), initializer=self.weight_initializer)
        self._W3 = self.add_weight(shape=(temporal_input_dim + static_input_dim, temporal_input_dim), name="{}_W3".format(self.name), initializer=self.weight_initializer)
        self._b2 = self.add_weight(shape=(temporal_input_dim,), name="{}_b2".format(self.name), initializer=self.weight_initializer)
        self._b3 = self.add_weight(shape=(temporal_input_dim,), name="{}_b3".format(self.name), initializer=self.weight_initializer)
        self._V = self.add_weight(shape=(temporal_input_dim, 1), name="{}_V".format(self.name), initializer=self.weight_initializer)
        
        super(ExternalAttentionRNNWrapper, self).build() 
Example #30
Source File: model.py    From keras-yolo3 with MIT License 5 votes vote down vote up
def box_iou(b1, b2):
    '''Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    '''

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou