Python keras.backend.dropout() Examples
The following are 30
code examples of keras.backend.dropout().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: PhasedLSTM.py From PhasedLSTM-Keras with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(PhasedLSTM, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #2
Source File: PhasedLSTM.py From PhasedLSTM-Keras with MIT License | 6 votes |
def preprocess_input(self, inputs, training=None): if self.implementation == 0: input_shape = K.int_shape(inputs) input_dim = input_shape[2] timesteps = input_shape[1] x_i = _time_distributed_dense(inputs, self.kernel_i, self.bias_i, self.dropout, input_dim, self.units, timesteps, training=training) x_f = _time_distributed_dense(inputs, self.kernel_f, self.bias_f, self.dropout, input_dim, self.units, timesteps, training=training) x_c = _time_distributed_dense(inputs, self.kernel_c, self.bias_c, self.dropout, input_dim, self.units, timesteps, training=training) x_o = _time_distributed_dense(inputs, self.kernel_o, self.bias_o, self.dropout, input_dim, self.units, timesteps, training=training) return K.concatenate([x_i, x_f, x_c, x_o], axis=2) else: return inputs
Example #3
Source File: tgru_k2_gpu.py From chemical_vae with Apache License 2.0 | 6 votes |
def get_constants(self, inputs, training=None): constants = [] if 0. < self.recurrent_dropout < 1.: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #4
Source File: ternary_layers.py From nn_playground with MIT License | 6 votes |
def step(self, inputs, states): if 0 < self.dropout < 1: h = ternarize_dot(inputs * states[1], self.kernel) else: h = ternarize_dot(inputs, self.kernel) if self.bias is not None: h = K.bias_add(h, self.bias) prev_output = states[0] if 0 < self.recurrent_dropout < 1: prev_output *= states[2] output = h + ternarize_dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) # Properly set learning phase on output tensor. if 0 < self.dropout + self.recurrent_dropout: output._uses_learning_phase = True return output, [output]
Example #5
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #6
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(TT_GRU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #7
Source File: qrnn.py From nn_playground with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'window_size': self.window_size, 'stride': self.strides[0], 'return_sequences': self.return_sequences, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'use_bias': self.use_bias, 'dropout': self.dropout, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(QRNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #8
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(TT_RNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #9
Source File: qrnn.py From nn_playground with MIT License | 6 votes |
def preprocess_input(self, inputs, training=None): if self.window_size > 1: inputs = K.temporal_padding(inputs, (self.window_size-1, 0)) inputs = K.expand_dims(inputs, 2) # add a dummy dimension output = K.conv2d(inputs, self.kernel, strides=self.strides, padding='valid', data_format='channels_last') output = K.squeeze(output, 2) # remove the dummy dimension if self.use_bias: output = K.bias_add(output, self.bias, data_format='channels_last') if self.dropout is not None and 0. < self.dropout < 1.: z = output[:, :, :self.units] f = output[:, :, self.units:2 * self.units] o = output[:, :, 2 * self.units:] f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training) return K.concatenate([z, f, o], -1) else: return output
Example #10
Source File: qrnn.py From embedding-as-service with MIT License | 6 votes |
def preprocess_input(self, inputs, training=None): if self.window_size > 1: inputs = K.temporal_padding(inputs, (self.window_size - 1, 0)) inputs = K.expand_dims(inputs, 2) # add a dummy dimension output = K.conv2d(inputs, self.kernel, strides=self.strides, padding='valid', data_format='channels_last') output = K.squeeze(output, 2) # remove the dummy dimension if self.use_bias: output = K.bias_add(output, self.bias, data_format='channels_last') if self.dropout is not None and 0. < self.dropout < 1.: z = output[:, :, :self.units] f = output[:, :, self.units:2 * self.units] o = output[:, :, 2 * self.units:] f = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f, training=training) return K.concatenate([z, f, o], -1) else: return output
Example #11
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #12
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #13
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def step(self, inputs, states): h_tm1 = states[0] # previous memory #B_U = states[1] # dropout matrices for recurrent units #B_W = states[2] h_tm1a = K.dot(h_tm1, self.Wa) eij = K.dot(K.tanh(h_tm1a + K.dot(inputs[:, :self.h_dim], self.Ua)), self.Va) eijs = K.repeat_elements(eij, self.h_dim, axis=1) #alphaij = K.softmax(eijs) # batchsize * lenh h batchsize * lenh * ndim #ci = K.permute_dimensions(K.permute_dimensions(self.h, [2,0,1]) * alphaij, [1,2,0]) #cisum = K.sum(ci, axis=1) cisum = eijs*inputs[:, :self.h_dim] #print(K.shape(cisum), cisum.shape, ci.shape, self.h.shape, alphaij.shape, x.shape) zr = K.sigmoid(K.dot(inputs[:, self.h_dim:], self.Wzr) + K.dot(h_tm1, self.Uzr) + K.dot(cisum, self.Czr)) zi = zr[:, :self.units] ri = zr[:, self.units: 2 * self.units] si_ = K.tanh(K.dot(inputs[:, self.h_dim:], self.W) + K.dot(ri*h_tm1, self.U) + K.dot(cisum, self.C)) si = (1-zi) * h_tm1 + zi * si_ return si, [si] #h_tm1, [h_tm1]
Example #14
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def step(self, x, states): h_tm1 = states[0] # previous memory dp_mask = states[1] # dropout matrices for recurrent units rec_dp_mask = states[2] res = x * dp_mask[0] for k in range(self.num_dim - 1, -1, -1): res = K.dot(K.reshape(res, (-1, self.shapes[k][0])), K.reshape(self.cores[k], self.shapes[k]) ) res = K.transpose(K.reshape(res, (-1, self.tt_output_shape[k]))) res = K.transpose(K.reshape(res, (-1, K.shape(x)[0]))) matrix_x = res if self.use_bias: matrix_x = K.bias_add(matrix_x, self.bias) matrix_inner = K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel[:, :2 * self.units]) x_z = matrix_x[:, :self.units] x_r = matrix_x[:, self.units: 2 * self.units] recurrent_z = matrix_inner[:, :self.units] recurrent_r = matrix_inner[:, self.units: 2 * self.units] z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) x_h = matrix_x[:, 2 * self.units:] recurrent_h = K.dot(r * h_tm1 * rec_dp_mask[0], self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) h = z * h_tm1 + (1 - z) * hh if 0. < self.dropout + self.recurrent_dropout: h._uses_learning_phase = True return h, [h]
Example #15
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0. < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0. < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #16
Source File: qrnn.py From qrnn with MIT License | 5 votes |
def step(self, input, states): prev_output = states[0] z = input[:, :self.output_dim] f = input[:, self.output_dim:2 * self.output_dim] o = input[:, 2 * self.output_dim:] z = self.activation(z) f = f if self.dropout is not None and 0. < self.dropout < 1. else K.sigmoid(f) o = K.sigmoid(o) output = f * prev_output + (1 - f) * z output = o * output return output, [output]
Example #17
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def step(self, x, states): if 0. < self.dropout < 1.: x = x * states[1] res = x for k in range(self.num_dim - 1, -1, -1): res = K.dot(K.reshape(res, (-1, self.shapes[k][0])), K.reshape(self.cores[k], self.shapes[k]) ) res = K.transpose(K.reshape(res, (-1, self.tt_output_shape[k]))) res = K.transpose(K.reshape(res, (-1, K.shape(x)[0]))) h = res if self.bias is not None: h = res + self.bias prev_output = states[0] if 0. < self.recurrent_dropout < 1.: prev_output *= states[2] output = h + K.dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) if 0. < self.dropout + self.recurrent_dropout: output._uses_learning_phase = True return output, [output]
Example #18
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0. < self.dropout < 1.: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(dp_mask) else: constants.append(K.cast_to_floatx(1.)) if 0. < self.recurrent_dropout < 1.: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(rec_dp_mask) else: constants.append(K.cast_to_floatx(1.)) return constants
Example #19
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def step(self, x, states): h_tm1 = states[0] c_tm1 = states[1] dp_mask = states[2] rec_dp_mask = states[3] res = x * dp_mask[0] for k in range(self.num_dim - 1, -1, -1): res = K.dot(K.reshape(res, (-1, self.shapes[k][0])), K.reshape(self.cores[k], self.shapes[k]) ) res = K.transpose(K.reshape(res, (-1, self.tt_output_shape[k]))) res = K.transpose(K.reshape(res, (-1, K.shape(x)[0]))) z = res z += K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z0 = z[:, :self.units] z1 = z[:, self.units: 2 * self.units] z2 = z[:, 2 * self.units: 3 * self.units] z3 = z[:, 3 * self.units:] i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) h = o * self.activation(c) if 0. < self.dropout + self.recurrent_dropout: h._uses_learning_phase = True return h, [h, c]
Example #20
Source File: PhasedLSTM.py From PhasedLSTM-Keras with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation == 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #21
Source File: qrnn.py From qrnn with MIT License | 5 votes |
def preprocess_input(self, x): if self.bias: weights = zip(self.trainable_weights[0:3], self.trainable_weights[3:]) else: weights = self.trainable_weights if self.window_size > 1: x = K.asymmetric_temporal_padding(x, self.window_size-1, 0) x = K.expand_dims(x, 2) # add a dummy dimension # z, f, o outputs = [] for param in weights: if self.bias: W, b = param else: W = param output = K.conv2d(x, W, strides=self.subsample, border_mode='valid', dim_ordering='tf') output = K.squeeze(output, 2) # remove the dummy dimension if self.bias: output += K.reshape(b, (1, 1, self.output_dim)) outputs.append(output) if self.dropout is not None and 0. < self.dropout < 1.: f = K.sigmoid(outputs[1]) outputs[1] = K.in_train_phase(1 - _dropout(1 - f, self.dropout), f) return K.concatenate(outputs, 2)
Example #22
Source File: VariationalDropout.py From R-NET-in-Keras with MIT License | 5 votes |
def call(self, inputs, training=None): if 0. < self.rate < 1.: symbolic_shape = K.shape(inputs) noise_shape = [shape if shape > 0 else symbolic_shape[axis] for axis, shape in enumerate(self.noise_shape)] noise_shape = tuple(noise_shape) def dropped_inputs(): return K.dropout(inputs, self.rate, noise_shape, seed=self.seed) return K.in_train_phase(dropped_inputs, inputs, training=training) return inputs
Example #23
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def build_model(loader, args, verbose=False): input_models = {} dropout_rate = args.dropout permanent_dropout = True for fea_type, shape in loader.feature_shapes.items(): box = build_feature_model(input_shape=shape, name=fea_type, dense_layers=args.dense_feature_layers, dropout_rate=dropout_rate, permanent_dropout=permanent_dropout) if verbose: box.summary() input_models[fea_type] = box inputs = [] encoded_inputs = [] for fea_name, fea_type in loader.input_features.items(): shape = loader.feature_shapes[fea_type] fea_input = Input(shape, name='input.'+fea_name) inputs.append(fea_input) input_model = input_models[fea_type] encoded = input_model(fea_input) encoded_inputs.append(encoded) merged = keras.layers.concatenate(encoded_inputs) h = merged for i, layer in enumerate(args.dense): x = h h = Dense(layer, activation=args.activation)(h) if dropout_rate > 0: if permanent_dropout: h = PermanentDropout(dropout_rate)(h) else: h = Dropout(dropout_rate)(h) if args.residual: try: h = keras.layers.add([h, x]) except ValueError: pass output = Dense(1)(h) return Model(inputs, output)
Example #24
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def extension_from_parameters(args): """Construct string for saving model with annotation of parameters""" ext = '' ext += '.A={}'.format(args.activation) ext += '.B={}'.format(args.batch_size) ext += '.E={}'.format(args.epochs) ext += '.O={}'.format(args.optimizer) # ext += '.LEN={}'.format(args.maxlen) ext += '.LR={}'.format(args.learning_rate) ext += '.CF={}'.format(''.join([x[0] for x in sorted(args.cell_features)])) ext += '.DF={}'.format(''.join([x[0] for x in sorted(args.drug_features)])) if args.feature_subsample > 0: ext += '.FS={}'.format(args.feature_subsample) if args.dropout > 0: ext += '.DR={}'.format(args.dropout) if args.warmup_lr: ext += '.wu_lr' if args.reduce_lr: ext += '.re_lr' if args.residual: ext += '.res' if args.use_landmark_genes: ext += '.L1000' if args.gen: ext += '.gen' if args.use_combo_score: ext += '.scr' if args.use_mean_growth: ext += '.mg' for i, n in enumerate(args.dense): if n > 0: ext += '.D{}={}'.format(i+1, n) if args.dense_feature_layers != args.dense: for i, n in enumerate(args.dense): if n > 0: ext += '.FD{}={}'.format(i+1, n) return ext
Example #25
Source File: infer_dose.py From Benchmarks with MIT License | 5 votes |
def call(self, x, mask=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(x) x = K.dropout(x, self.rate, noise_shape) return x
Example #26
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def build_model(loader, args, verbose=False): input_models = {} dropout_rate = args.dropout permanent_dropout = True for fea_type, shape in loader.feature_shapes.items(): box = build_feature_model(input_shape=shape, name=fea_type, dense_layers=args.dense_feature_layers, dropout_rate=dropout_rate, permanent_dropout=permanent_dropout) if verbose: box.summary() input_models[fea_type] = box inputs = [] encoded_inputs = [] for fea_name, fea_type in loader.input_features.items(): shape = loader.feature_shapes[fea_type] fea_input = Input(shape, name='input.'+fea_name) inputs.append(fea_input) input_model = input_models[fea_type] encoded = input_model(fea_input) encoded_inputs.append(encoded) merged = keras.layers.concatenate(encoded_inputs) h = merged for i, layer in enumerate(args.dense): x = h h = Dense(layer, activation=args.activation)(h) if dropout_rate > 0: if permanent_dropout: h = PermanentDropout(dropout_rate)(h) else: h = Dropout(dropout_rate)(h) if args.residual: try: h = keras.layers.add([h, x]) except ValueError: pass output = Dense(1)(h) return Model(inputs, output)
Example #27
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def call(self, x, mask=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(x) x = K.dropout(x, self.rate, noise_shape) return x
Example #28
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def extension_from_parameters(args): """Construct string for saving model with annotation of parameters""" ext = '' ext += '.A={}'.format(args.activation) ext += '.B={}'.format(args.batch_size) ext += '.E={}'.format(args.epochs) ext += '.O={}'.format(args.optimizer) # ext += '.LEN={}'.format(args.maxlen) ext += '.LR={}'.format(args.learning_rate) ext += '.CF={}'.format(''.join([x[0] for x in sorted(args.cell_features)])) ext += '.DF={}'.format(''.join([x[0] for x in sorted(args.drug_features)])) if args.feature_subsample > 0: ext += '.FS={}'.format(args.feature_subsample) if args.dropout > 0: ext += '.DR={}'.format(args.dropout) if args.warmup_lr: ext += '.wu_lr' if args.reduce_lr: ext += '.re_lr' if args.residual: ext += '.res' if args.use_landmark_genes: ext += '.L1000' if args.gen: ext += '.gen' if args.use_combo_score: ext += '.scr' for i, n in enumerate(args.dense): if n > 0: ext += '.D{}={}'.format(i+1, n) if args.dense_feature_layers != args.dense: for i, n in enumerate(args.dense): if n > 0: ext += '.FD{}={}'.format(i+1, n) return ext
Example #29
Source File: dropout_always_on.py From gdl-fire-4d with GNU General Public License v3.0 | 5 votes |
def call(self, inputs, training=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(inputs) return K.dropout(inputs, self.rate, noise_shape, seed=self.seed) return inputs
Example #30
Source File: ternary_layers.py From nn_playground with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(dp_mask) else: constants.append(K.cast_to_floatx(1.)) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(rec_dp_mask) else: constants.append(K.cast_to_floatx(1.)) return constants # Aliases