Python keras.backend.zeros_like() Examples
The following are 30
code examples of keras.backend.zeros_like().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: load_trained_models.py From Coloring-greyscale-images with MIT License | 6 votes |
def __init__(self, resource_path='./resources/', learning_rate=0.0002, decay_rate=2e-6, gpus = 1): self.gpus = gpus self.learning_rate = learning_rate self.decay_rate = decay_rate def zero_loss(y_true, y_pred): return K.zeros_like(y_true) discriminator_full = load_model(resource_path + 'discriminator_full.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf, 'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN}) discriminator_full.trainable = True discriminator_full.name = "discriminator_full" self.model = discriminator_full self.save_model = discriminator_full
Example #2
Source File: evaluation_metrics.py From deep-mlsa with Apache License 2.0 | 6 votes |
def precision_keras(y_true, y_pred): #convert probas to 0,1 y_pred_ones = K.zeros_like(y_true) y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1 #where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true*y_pred_ones, axis=0) #for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) #precision for each class precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt) #return average f1 score over all classes return K.mean(precision)
Example #3
Source File: crf.py From keras-contrib with MIT License | 6 votes |
def call(self, X, mask=None): if mask is not None: assert K.ndim(mask) == 2, 'Input mask to CRF must have dim 2 if not None' if self.test_mode == 'viterbi': test_output = self.viterbi_decoding(X, mask) else: test_output = self.get_marginal_prob(X, mask) self.uses_learning_phase = True if self.learn_mode == 'join': train_output = K.zeros_like(K.dot(X, self.kernel)) out = K.in_train_phase(train_output, test_output) else: if self.test_mode == 'viterbi': train_output = self.get_marginal_prob(X, mask) out = K.in_train_phase(train_output, test_output) else: out = test_output return out
Example #4
Source File: model_loss.py From speech_separation with MIT License | 6 votes |
def audio_discriminate_loss2(gamma=0.1,beta = 2*0.1,num_speaker=2): def loss_func(S_true,S_pred,gamma=gamma,beta=beta,num_speaker=num_speaker): sum_mtr = K.zeros_like(S_true[:,:,:,:,0]) for i in range(num_speaker): sum_mtr += K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,i]) for j in range(num_speaker): if i != j: sum_mtr -= gamma*(K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,j])) for i in range(num_speaker): for j in range(i+1,num_speaker): #sum_mtr -= beta*K.square(S_pred[:,:,:,i]-S_pred[:,:,:,j]) #sum_mtr += beta*K.square(S_true[:,:,:,:,i]-S_true[:,:,:,:,j]) pass #sum = K.sum(K.maximum(K.flatten(sum_mtr),0)) loss = K.mean(K.flatten(sum_mtr)) return loss return loss_func
Example #5
Source File: multi_perspective_layer.py From MatchZoo with Apache License 2.0 | 6 votes |
def collect_final_step_of_lstm(lstm_representation, lengths): """ Collect final step of lstm. :param lstm_representation: [batch_size, len_rt, dim] :param lengths: [batch_size] :return: [batch_size, dim] """ lengths = tf.maximum(lengths, K.zeros_like(lengths)) batch_size = tf.shape(lengths)[0] # shape (batch_size) batch_nums = tf.range(0, limit=batch_size) # shape (batch_size, 2) indices = tf.stack((batch_nums, lengths), axis=1) result = tf.gather_nd(lstm_representation, indices, name='last-forwar-lstm') # [batch_size, dim] return result
Example #6
Source File: evaluation_metrics_tf.py From deep-mlsa with Apache License 2.0 | 6 votes |
def precision_keras(y_true, y_pred): # convert probas to 0,1 y_pred_ones = K.zeros_like(y_true) y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1 # where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true * y_pred_ones, axis=0) # for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) # precision for each class precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt) # return average f1 score over all classes return K.mean(precision)
Example #7
Source File: evaluation_metrics_tf.py From deep-mlsa with Apache License 2.0 | 6 votes |
def f1_score_taskB(y_true, y_pred): # convert probas to 0,1 y_pred_ones = K.zeros_like(y_true) y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1 # where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true * y_pred_ones, axis=0) # for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) # for each class: how many are true members of said class gold_cnt = K.sum(y_true, axis=0) # precision for each class precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt) # recall for each class recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred / gold_cnt) # f1 for each class f1_class = K.switch(K.equal(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall)) # return average f1 score over all classes return f1_class
Example #8
Source File: evaluation_metrics_theano.py From deep-mlsa with Apache License 2.0 | 6 votes |
def precision_keras(y_true, y_pred): #convert probas to 0,1 y_pred_ones = K.zeros_like(y_true) y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1 #where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true*y_pred_ones, axis=0) #for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) #precision for each class precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt) #return average f1 score over all classes return K.mean(precision)
Example #9
Source File: evaluation_metrics_theano.py From deep-mlsa with Apache License 2.0 | 6 votes |
def f1_score_semeval(y_true, y_pred): # convert probas to 0,1 y_ppred = K.zeros_like(y_true) y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1) # where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true * y_pred_ones, axis=0) # for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) # for each class: how many are true members of said class gold_cnt = K.sum(y_true, axis=0) # precision for each class precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred / pred_cnt) # recall for each class recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred / gold_cnt) # f1 for each class f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall)) #return average f1 score over all classes return (f1_class[0] + f1_class[2])/2.0
Example #10
Source File: evaluation_metrics_theano.py From deep-mlsa with Apache License 2.0 | 6 votes |
def f1_score_taskB(y_true, y_pred): #convert probas to 0,1 y_pred_ones = K.zeros_like(y_true) y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1 #where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true*y_pred_ones, axis=0) #for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) #for each class: how many are true members of said class gold_cnt = K.sum(y_true, axis=0) #precision for each class precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt) #recall for each class recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred/gold_cnt) #f1 for each class f1_class = K.switch(K.equal(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall)) #return average f1 score over all classes return f1_class
Example #11
Source File: evaluation_metrics_theano.py From deep-mlsa with Apache License 2.0 | 6 votes |
def f1_score_keras(y_true, y_pred): #convert probas to 0,1 y_ppred = K.zeros_like(y_true) y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1) #where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true*y_pred_ones, axis=0) #for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) #for each class: how many are true members of said class gold_cnt = K.sum(y_true, axis=0) #precision for each class precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred/pred_cnt) #recall for each class recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred/gold_cnt) #f1 for each class f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall)) #return average f1 score over all classes return K.mean(f1_class)
Example #12
Source File: ChainCRF.py From naacl18-multitask_argument_mining with Apache License 2.0 | 6 votes |
def _forward(x, reduce_step, initial_states, U, mask=None): '''Forward recurrence of the linear chain crf.''' def _forward_step(energy_matrix_t, states): alpha_tm1 = states[-1] new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t) return new_states[0], new_states U_shared = K.expand_dims(K.expand_dims(U, 0), 0) if mask is not None: mask = K.cast(mask, K.floatx()) mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3) U_shared = U_shared * mask_U inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1) last, values, _ = K.rnn(_forward_step, inputs, initial_states) return last, values
Example #13
Source File: ChainCRF.py From elmo-bilstm-cnn-crf with Apache License 2.0 | 6 votes |
def add_boundary_energy(x, b_start=None, b_end=None, mask=None): '''Given the observations x, it adds the start boundary energy b_start (resp. end boundary energy b_end on the start (resp. end) elements and multiplies the mask.''' if mask is None: if b_start is not None: x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1) if b_end is not None: x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1) else: mask = K.cast(mask, K.floatx()) mask = K.expand_dims(mask, 2) x *= mask if b_start is not None: mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]], axis=1) start_mask = K.cast(K.greater(mask, mask_r), K.floatx()) x = x + start_mask * b_start if b_end is not None: mask_l = K.concatenate([mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1) end_mask = K.cast(K.greater(mask, mask_l), K.floatx()) x = x + end_mask * b_end return x
Example #14
Source File: ChainCRF.py From naacl18-multitask_argument_mining with Apache License 2.0 | 6 votes |
def add_boundary_energy(x, b_start=None, b_end=None, mask=None): '''Given the observations x, it adds the start boundary energy b_start (resp. end boundary energy b_end on the start (resp. end) elements and multiplies the mask.''' if mask is None: if b_start is not None: x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1) if b_end is not None: x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1) else: mask = K.cast(mask, K.floatx()) mask = K.expand_dims(mask, 2) x *= mask if b_start is not None: mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]], axis=1) start_mask = K.cast(K.greater(mask, mask_r), K.floatx()) x = x + start_mask * b_start if b_end is not None: mask_l = K.concatenate([mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1) end_mask = K.cast(K.greater(mask, mask_l), K.floatx()) x = x + end_mask * b_end return x
Example #15
Source File: ChainCRF.py From elmo-bilstm-cnn-crf with Apache License 2.0 | 6 votes |
def _forward(x, reduce_step, initial_states, U, mask=None): '''Forward recurrence of the linear chain crf.''' def _forward_step(energy_matrix_t, states): alpha_tm1 = states[-1] new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t) return new_states[0], new_states U_shared = K.expand_dims(K.expand_dims(U, 0), 0) if mask is not None: mask = K.cast(mask, K.floatx()) mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3) U_shared = U_shared * mask_U inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1) last, values, _ = K.rnn(_forward_step, inputs, initial_states) return last, values
Example #16
Source File: ChainCRF.py From elmo-bilstm-cnn-crf with Apache License 2.0 | 6 votes |
def _backward(gamma, mask): '''Backward recurrence of the linear chain crf.''' gamma = K.cast(gamma, 'int32') def _backward_step(gamma_t, states): y_tm1 = K.squeeze(states[0], 0) y_t = batch_gather(gamma_t, y_tm1) return y_t, [K.expand_dims(y_t, 0)] initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)] _, y_rev, _ = K.rnn(_backward_step, gamma, initial_states, go_backwards=True) y = K.reverse(y_rev, 1) if mask is not None: mask = K.cast(mask, dtype='int32') # mask output y *= mask # set masked values to -1 y += -(1 - mask) return y
Example #17
Source File: ChainCRF.py From naacl18-multitask_argument_mining with Apache License 2.0 | 6 votes |
def _backward(gamma, mask): '''Backward recurrence of the linear chain crf.''' gamma = K.cast(gamma, 'int32') def _backward_step(gamma_t, states): y_tm1 = K.squeeze(states[0], 0) y_t = batch_gather(gamma_t, y_tm1) return y_t, [K.expand_dims(y_t, 0)] initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)] _, y_rev, _ = K.rnn(_backward_step, gamma, initial_states, go_backwards=True) y = K.reverse(y_rev, 1) if mask is not None: mask = K.cast(mask, dtype='int32') # mask output y *= mask # set masked values to -1 y += -(1 - mask) return y
Example #18
Source File: capsule.py From Keras-TextClassification with MIT License | 6 votes |
def call(self, u_vecs): if self.share_weights: u_hat_vecs = K.conv1d(u_vecs, self.W) else: u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1]) batch_size = K.shape(u_vecs)[0] input_num_capsule = K.shape(u_vecs)[1] u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule, self.num_capsule, self.dim_capsule)) u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3)) # final u_hat_vecs.shape = [None, num_capsule, input_num_capsule, dim_capsule] b = K.zeros_like(u_hat_vecs[:, :, :, 0]) # shape = [None, num_capsule, input_num_capsule] outputs = None for i in range(self.routings): b = K.permute_dimensions(b, (0, 2, 1)) # shape = [None, input_num_capsule, num_capsule] c = K.softmax(b) c = K.permute_dimensions(c, (0, 2, 1)) b = K.permute_dimensions(b, (0, 2, 1)) outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2])) if i < self.routings - 1: b = K.batch_dot(outputs, u_hat_vecs, [2, 3]) return outputs
Example #19
Source File: models.py From DigiX_HuaWei_Population_Age_Attribution_Predict with MIT License | 6 votes |
def call(self, u_vecs): if self.share_weights: u_hat_vecs = K.conv1d(u_vecs, self.W) else: u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1]) batch_size = K.shape(u_vecs)[0] input_num_capsule = K.shape(u_vecs)[1] u_hat_vecs = K.reshape(u_hat_vecs, (batch_size, input_num_capsule, self.num_capsule, self.dim_capsule)) u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3)) b = K.zeros_like(u_hat_vecs[:, :, :, 0]) # shape = [None, num_capsule, input_num_capsule] for i in range(self.routings): b = K.permute_dimensions(b, (0, 2, 1)) # shape = [None, input_num_capsule, num_capsule] c = K.softmax(b) c = K.permute_dimensions(c, (0, 2, 1)) b = K.permute_dimensions(b, (0, 2, 1)) outputs = self.activation(K.batch_dot(c, u_hat_vecs, [2, 2])) if i < self.routings - 1: b = K.batch_dot(outputs, u_hat_vecs, [2, 3]) return outputs
Example #20
Source File: load_trained_models.py From Coloring-greyscale-images with MIT License | 6 votes |
def __init__(self, resource_path='./resources/', learning_rate=0.0002, decay_rate=2e-6, gpus = 0): self.gpus = gpus self.learning_rate = learning_rate self.decay_rate = decay_rate def zero_loss(y_true, y_pred): return K.zeros_like(y_true) discriminator_low = load_model(resource_path + 'discriminator_low.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf,'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN}) discriminator_low.trainable = True discriminator_low.name = "discriminator_low" self.model = discriminator_low self.save_model = discriminator_low
Example #21
Source File: evaluation_metrics_theano.py From deep-mlsa with Apache License 2.0 | 6 votes |
def f1_score_task3(y_true, y_pred): #convert probas to 0,1 y_ppred = K.zeros_like(y_true) y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1) #where y_ture=1 and y_pred=1 -> true positive y_true_pred = K.sum(y_true*y_pred_ones, axis=0) #for each class: how many where classified as said class pred_cnt = K.sum(y_pred_ones, axis=0) #for each class: how many are true members of said class gold_cnt = K.sum(y_true, axis=0) #precision for each class precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred/pred_cnt) #recall for each class recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred/gold_cnt) #f1 for each class f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall)) #return average f1 score over all classes return f1_class[1]
Example #22
Source File: crf.py From keras-contrib with MIT License | 5 votes |
def shift_right(x, offset=1): assert offset > 0 return K.concatenate([K.zeros_like(x[:, :offset]), x[:, :-offset]], axis=1)
Example #23
Source File: network.py From ecg with GNU General Public License v3.0 | 5 votes |
def resnet_block( layer, num_filters, subsample_length, block_index, **params): from keras.layers import Add from keras.layers import MaxPooling1D from keras.layers.core import Lambda def zeropad(x): y = K.zeros_like(x) return K.concatenate([x, y], axis=2) def zeropad_output_shape(input_shape): shape = list(input_shape) assert len(shape) == 3 shape[2] *= 2 return tuple(shape) shortcut = MaxPooling1D(pool_size=subsample_length)(layer) zero_pad = (block_index % params["conv_increase_channels_at"]) == 0 \ and block_index > 0 if zero_pad is True: shortcut = Lambda(zeropad, output_shape=zeropad_output_shape)(shortcut) for i in range(params["conv_num_skip"]): if not (block_index == 0 and i == 0): layer = _bn_relu( layer, dropout=params["conv_dropout"] if i > 0 else 0, **params) layer = add_conv_weight( layer, params["conv_filter_length"], num_filters, subsample_length if i == 0 else 1, **params) layer = Add()([shortcut, layer]) return layer
Example #24
Source File: train.py From BERT-keras with GNU General Public License v3.0 | 5 votes |
def _mask_loss(y_true, y_pred, y_mask, element_wise_loss): l = K.switch(y_mask, element_wise_loss(y_true, y_pred), K.zeros_like(y_mask, dtype=K.floatx())) return K.sum(l) / (K.cast(K.sum(y_mask), dtype='float32') + K.epsilon())
Example #25
Source File: deep_residual_learning_blocks.py From CNNArt with Apache License 2.0 | 5 votes |
def zeropad(x): y = K.zeros_like(x) return K.concatenate([x, y], axis=1)
Example #26
Source File: transform_rnn.py From View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition with MIT License | 5 votes |
def _trans(theta): tx = theta[:,3:4] ty = theta[:,4:5] tz = theta[:,5:6] zero = K.zeros_like(tx) one = K.ones_like(tx) first = K.reshape(K.concatenate([one,zero,zero,tx],axis=1),(-1,1,4)) second = K.reshape(K.concatenate([zero,one,zero,ty],axis=1),(-1,1,4)) third = K.reshape(K.concatenate([zero,zero,one,tz],axis=1),(-1,1,4)) trans = K.concatenate([first,second,third],axis=1) trans = trans.reshape((trans.shape[0],3,4)) return trans
Example #27
Source File: head.py From NTM-Keras with MIT License | 5 votes |
def batch_reading(head_num, memory_size, memory_dim, memory_t, weight_t): """ Reading memory. :param head_num: :param memory_size: :param memory_dim: :param memory_t: the $N \times M$ memory matrix at time $t$, where $N$ is the number of memory locations, and $M$ is the vector size at each location. :param weight_t: $w_t$ is a vector of weightings over the $N$ locations emitted by a reading head at time $t$. Since all weightings are normalized, the $N$ elements $w_t(i)$ of $\textbf{w}_t$ obey the following constraints: $$\sum_{i=1}^{N} w_t(i) = 1, 0 \le w_t(i) \le 1,\forall i$$ The length $M$ read vector $r_t$ returned by the head is defined as a convex combination of the row-vectors $M_t(i)$ in memory: $$\textbf{r}_t \leftarrow \sum_{i=1}^{N}w_t(i)\textbf{M}_t(i)$$ :return: the content reading from memory. """ r_t_list = K.zeros_like((head_num * memory_dim, 1)) for i in xrange(head_num): begin = i * memory_size end = begin + memory_size r_t = reading(memory_t, weight_t[begin:end]) r_t_list[begin:end] = r_t return r_t_list
Example #28
Source File: Seq2Seq.py From dts with MIT License | 5 votes |
def _format_encoder_states(self, encoder_states, use_first=True): """ Format the encoder states in such a way that only the last state from the first layer of the encoder is used to init the first layer of the decoder. If the cell type used is LSTM then both c and h are kept. :param encoder_states: Keras.tensor (last) hidden state of the decoder :param use_first: bool if True use only the last hidden state from first layer of the encoder, while the other are init to zero. if False use last hidden state for all layers :return: masked encoder states """ if use_first: # Keras version 2.1.4 has encoder states reversed w.r.t later versions if keras.__version__ < '2.2': if self.cell == 'lstm': encoder_states = [Lambda(lambda x: K.zeros_like(x))(s) for s in encoder_states[:-2]] + [ encoder_states[-2]] else: encoder_states = [Lambda(lambda x: K.zeros_like(x))(s) for s in encoder_states[:-1]] + [ encoder_states[-1]] else: if self.cell == 'lstm': encoder_states = encoder_states[:2] + [Lambda(lambda x: K.zeros_like(x))(s) for s in encoder_states[2:]] else: encoder_states = encoder_states[:1] + [Lambda(lambda x: K.zeros_like(x))(s) for s in encoder_states[1:]] return encoder_states
Example #29
Source File: seg_util.py From aitom with GNU General Public License v3.0 | 5 votes |
def weighted_mean_squared_error(y_true, y_pred, weights): mask = K.zeros_like(y_true) for lbl in weights: mask += K.cast(K.equal(y_true, lbl), dtype='float32') * (K.zeros_like(y_true) + weights[lbl]) # An adhoc way to solve the problem of: tensor object does not support item assignment return K.mean(K.square(y_pred - y_true)*mask, axis=-1)
Example #30
Source File: deep_residual_learning_blocks.py From CNNArt with Apache License 2.0 | 5 votes |
def zeropad(x): y = K.zeros_like(x) return K.concatenate([x, y], axis=1)