Python keras.backend.cast_to_floatx() Examples
The following are 30
code examples of keras.backend.cast_to_floatx().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: layers.py From research with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * self.output_dim, 1) B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones) constants.append(B_U) else: constants.append(K.cast_to_floatx(1.)) if self.consume_less == 'cpu' and 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * input_dim, 1) B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones) constants.append(B_W) else: constants.append(K.cast_to_floatx(1.)) return constants
Example #2
Source File: rtn.py From ikelos with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * self.output_dim, 1) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * input_dim, 1) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #3
Source File: rtn.py From ikelos with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * self.output_dim, 1) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * input_dim, 1) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #4
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #5
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #6
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] '''if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else:''' constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #7
Source File: QnA.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.output_dim)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #8
Source File: layers.py From research with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * self.output_dim, 1) B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones) constants.append(B_U) else: constants.append(K.cast_to_floatx(1.)) if self.consume_less == 'cpu' and 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.concatenate([ones] * input_dim, 1) B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones) constants.append(B_W) else: constants.append(K.cast_to_floatx(1.)) return constants
Example #9
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_constants(self, inputs, training=None): constants = [] constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0. < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #10
Source File: lstm2ntm.py From NTM-Keras with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.output_dim)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #11
Source File: tgru_k2_gpu.py From chemical_vae with Apache License 2.0 | 6 votes |
def get_constants(self, inputs, training=None): constants = [] if 0. < self.recurrent_dropout < 1.: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #12
Source File: recurrent.py From keras_bn_library with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.input_dim)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.dropout_W < 1: input_shape = K.int_shape(x) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #13
Source File: rnnrbm.py From keras_bn_library with MIT License | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.hidden_recurrent_dim)) B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones) constants.append(B_U) else: constants.append(K.cast_to_floatx(1.)) if self.consume_less == 'cpu' and 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, input_dim)) B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones) constants.append(B_W) else: constants.append(K.cast_to_floatx(1.)) return constants
Example #14
Source File: rhn.py From deep-models with Apache License 2.0 | 6 votes |
def get_constants(self, x): constants = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.output_dim)) B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)] constants.append(B_U) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, input_dim)) B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)] constants.append(B_W) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #15
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0. < self.dropout < 1.: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(dp_mask) else: constants.append(K.cast_to_floatx(1.)) if 0. < self.recurrent_dropout < 1.: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(rec_dp_mask) else: constants.append(K.cast_to_floatx(1.)) return constants
Example #16
Source File: utils.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def load_cifar100(label_mode='coarse'): (X_train, y_train), (X_test, y_test) = cifar100.load_data(label_mode=label_mode) X_train = normalize_minus1_1(cast_to_floatx(X_train)) X_test = normalize_minus1_1(cast_to_floatx(X_test)) return (X_train, y_train), (X_test, y_test)
Example #17
Source File: PhasedLSTM.py From PhasedLSTM-Keras with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation == 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #18
Source File: utils.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def load_cifar10(): (X_train, y_train), (X_test, y_test) = cifar10.load_data() X_train = normalize_minus1_1(cast_to_floatx(X_train)) X_test = normalize_minus1_1(cast_to_floatx(X_test)) return (X_train, y_train), (X_test, y_test)
Example #19
Source File: utils.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def load_mnist(): (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = normalize_minus1_1(cast_to_floatx(np.pad(X_train, ((0, 0), (2, 2), (2, 2)), 'constant'))) X_train = np.expand_dims(X_train, axis=get_channels_axis()) X_test = normalize_minus1_1(cast_to_floatx(np.pad(X_test, ((0, 0), (2, 2), (2, 2)), 'constant'))) X_test = np.expand_dims(X_test, axis=get_channels_axis()) return (X_train, y_train), (X_test, y_test)
Example #20
Source File: TTRNN.py From TT_RNN with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0. < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0. < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4)] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants
Example #21
Source File: utils.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def load_fashion_mnist(): (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() X_train = normalize_minus1_1(cast_to_floatx(np.pad(X_train, ((0, 0), (2, 2), (2, 2)), 'constant'))) X_train = np.expand_dims(X_train, axis=get_channels_axis()) X_test = normalize_minus1_1(cast_to_floatx(np.pad(X_test, ((0, 0), (2, 2), (2, 2)), 'constant'))) X_test = np.expand_dims(X_test, axis=get_channels_axis()) return (X_train, y_train), (X_test, y_test)
Example #22
Source File: multiclass_experiment.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def load_tinyimagenet(tinyimagenet_path='./'): images = [plt.imread(fp) for fp in glob(os.path.join(tinyimagenet_path, '*.jpg'))] for i in range(len(images)): if len(images[i].shape) != 3: images[i] = np.stack([images[i], images[i], images[i]], axis=-1) images = np.stack(images) images = normalize_minus1_1(K.cast_to_floatx(images)) return images
Example #23
Source File: utilities.py From NNCF with MIT License | 5 votes |
def __init__(self, l1=0., l2=0.): self.l1 = K.cast_to_floatx(l1) self.l2 = K.cast_to_floatx(l2)
Example #24
Source File: ternary_layers.py From nn_playground with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] if 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(dp_mask) else: constants.append(K.cast_to_floatx(1.)) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(rec_dp_mask) else: constants.append(K.cast_to_floatx(1.)) return constants # Aliases
Example #25
Source File: layers.py From asr-study with MIT License | 5 votes |
def get_constants(self, x): constants = [] for layer in xrange(self.depth): constant = [] if 0 < self.dropout_U < 1: ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.output_dim)) B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones) constant.append(B_U) else: constant.append(K.cast_to_floatx(1.)) if layer == 0: if 0 < self.dropout_W < 1: input_shape = self.input_spec[0].shape input_dim = input_shape[-1] ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, input_dim)) B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones) constant.append(B_W) else: constant.append(K.cast_to_floatx(1.)) constants.append(constant) return constants
Example #26
Source File: rnnlayer.py From recurrent-attention-for-QA-SQUAD-based-on-keras with MIT License | 5 votes |
def get_constants(self, inputs, training=None): constants = [] constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants
Example #27
Source File: custom.py From DLWP with MIT License | 5 votes |
def latitude_weighted_loss(loss_function=mean_squared_error, lats=None, output_shape=(), axis=-2, weighting='cosine'): """ Create a loss function that weights inputs by a function of latitude before calculating the loss. :param loss_function: method: Keras loss function to apply after the weighting :param lats: ndarray: 1-dimensional array of latitude coordinates :param output_shape: tuple: shape of expected model output :param axis: int: latitude axis in model output shape :param weighting: str: type of weighting to apply. Options are: cosine: weight by the cosine of the latitude (default) midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost to the mid-latitudes :return: callable loss function """ if weighting not in ['cosine', 'midlatitude']: raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'") if lats is not None: lat_tensor = K.zeros(lats.shape) lat_tensor.assign(K.cast_to_floatx(lats[:])) weights = K.cos(lat_tensor * np.pi / 180.) if weighting == 'midlatitude': weights = weights + 0.5 * K.pow(K.sin(lat_tensor * 2 * np.pi / 180.), 2.) weight_shape = output_shape[axis:] for d in weight_shape[1:]: weights = K.expand_dims(weights, axis=-1) weights = K.repeat_elements(weights, d, axis=-1) else: weights = K.ones(output_shape) def lat_loss(y_true, y_pred): return loss_function(y_true * weights, y_pred * weights) return lat_loss
Example #28
Source File: custom.py From DLWP with MIT License | 5 votes |
def __init__(self, loss_function, lats, data_format='channels_last', weighting='cosine'): """ Initialize a weighted loss. :param loss_function: method: Keras loss function to apply after the weighting :param lats: ndarray: 1-dimensional array of latitude coordinates :param data_format: Keras data_format ('channels_first' or 'channels_last') :param weighting: str: type of weighting to apply. Options are: cosine: weight by the cosine of the latitude (default) midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost to the mid-latitudes """ self.loss_function = loss_function self.lats = lats self.data_format = K.normalize_data_format(data_format) if weighting not in ['cosine', 'midlatitude']: raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'") self.weighting = weighting lat_tensor = K.zeros(lats.shape) print(lats) lat_tensor.assign(K.cast_to_floatx(lats[:])) self.weights = K.cos(lat_tensor * np.pi / 180.) if self.weighting == 'midlatitude': self.weights = self.weights - 0.25 * K.sin(lat_tensor * 2 * np.pi / 180.) self.is_init = False self.__name__ = 'latitude_weighted_loss'
Example #29
Source File: constraints_test.py From keras-contrib with MIT License | 5 votes |
def test_clip(): clip_instance = constraints.clip() clipped = clip_instance(K.variable(example_array)) assert(np.max(np.abs(K.eval(clipped))) <= K.cast_to_floatx(0.01)) clip_instance = constraints.clip(0.1) clipped = clip_instance(K.variable(example_array)) assert(np.max(np.abs(K.eval(clipped))) <= K.cast_to_floatx(0.1))
Example #30
Source File: sinerelu.py From keras-contrib with MIT License | 5 votes |
def __init__(self, epsilon=0.0025, **kwargs): super(SineReLU, self).__init__(**kwargs) self.supports_masking = True self.epsilon = K.cast_to_floatx(epsilon)