Python keras.backend.get_variable_shape() Examples
The following are 8
code examples of keras.backend.get_variable_shape().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: dfanet.py From Face-skin-hair-segmentaiton-and-skin-color-evaluation with Apache License 2.0 | 6 votes |
def AttentionRefinementModule(inputs): # Global average pooling nb_channels = K.get_variable_shape(inputs)[-1] net = GlobalAveragePooling2D()(inputs) net = Reshape((1, nb_channels))(net) net = Conv1D(nb_channels, kernel_size=1, kernel_initializer='he_normal', )(net) net = BatchNormalization()(net) net = Activation('relu')(net) net = Conv1D(nb_channels, kernel_size=1, kernel_initializer='he_normal', )(net) net = BatchNormalization()(net) net = Activation('sigmoid')(net) # tf.sigmoid(net) net = Multiply()([inputs, net]) return net
Example #2
Source File: weightnorm.py From weightnorm with MIT License | 6 votes |
def get_weightnorm_params_and_grads(p, g): ps = K.get_variable_shape(p) # construct weight scaler: V_scaler = g/||V|| V_scaler_shape = (ps[-1],) # assumes we're using tensorflow! V_scaler = K.ones(V_scaler_shape) # init to ones, so effective parameters don't change # get V parameters = ||V||/g * W norm_axes = [i for i in range(len(ps) - 1)] V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) # split V_scaler into ||V|| and g parameters V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes)) g_param = V_scaler * V_norm # get grad in V,g parameters grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \ (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V) return V, V_norm, V_scaler, g_param, grad_g, grad_V
Example #3
Source File: optimizer.py From Anime-Super-Resolution with MIT License | 6 votes |
def get_weightnorm_params_and_grads(p, g): ps = K.get_variable_shape(p) # construct weight scaler: V_scaler = g/||V|| V_scaler_shape = (ps[-1],) # assumes we're using tensorflow! V_scaler = K.ones(V_scaler_shape) # init to ones, so effective parameters don't change # get V parameters = ||V||/g * W norm_axes = [i for i in range(len(ps) - 1)] V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) # split V_scaler into ||V|| and g parameters V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes)) g_param = V_scaler * V_norm # get grad in V,g parameters grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \ (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V) return V, V_norm, V_scaler, g_param, grad_g, grad_V
Example #4
Source File: dfanet.py From Face-skin-hair-segmentaiton-and-skin-color-evaluation with Apache License 2.0 | 5 votes |
def separable_res_block_deep(inputs, nb_filters, filter_size=3, strides=1, dilation=1, ix=0): inputs = Activation('relu')(inputs) # , name=prefix + '_sepconv1_act' ip_nb_filter = K.get_variable_shape(inputs)[-1] if ip_nb_filter != nb_filters or strides != 1: residual = Conv2D(nb_filters, 1, strides=strides, use_bias=False)(inputs) residual = BatchNormalization()(residual) else: residual = inputs x = SeparableConv2D(nb_filters // 4, filter_size, dilation_rate=dilation, padding='same', use_bias=False, kernel_initializer='he_normal', )(inputs) x = BatchNormalization()(x) # name=prefix + '_sepconv1_bn' x = Activation('relu')(x) # , name=prefix + '_sepconv2_act' x = SeparableConv2D(nb_filters // 4, filter_size, dilation_rate=dilation, padding='same', use_bias=False, kernel_initializer='he_normal', )(x) x = BatchNormalization()(x) # name=prefix + '_sepconv2_bn' x = Activation('relu')(x) # , name=prefix + '_sepconv3_act' # if strides != 1: x = SeparableConv2D(nb_filters, filter_size, strides=strides, dilation_rate=dilation, padding='same', use_bias=False, )(x) x = BatchNormalization()(x) # name=prefix + '_sepconv3_bn' x = add([x, residual]) return x
Example #5
Source File: weightnorm.py From weightnorm with MIT License | 5 votes |
def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler): ps = K.get_variable_shape(new_V_param) norm_axes = [i for i in range(len(ps) - 1)] # update W and V_scaler new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes)) new_V_scaler = new_g_param / new_V_norm new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param updates.append(K.update(W, new_W)) updates.append(K.update(V_scaler, new_V_scaler)) # data based initialization for a given Keras model
Example #6
Source File: optimizer.py From Anime-Super-Resolution with MIT License | 5 votes |
def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler): ps = K.get_variable_shape(new_V_param) norm_axes = [i for i in range(len(ps) - 1)] # update W and V_scaler new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes)) new_V_scaler = new_g_param / new_V_norm new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param updates.append(K.update(W, new_W)) updates.append(K.update(V_scaler, new_V_scaler)) pass
Example #7
Source File: optimizer.py From Anime-Super-Resolution with MIT License | 4 votes |
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.initial_decay > 0: lr *= (1. / (1. + self.decay * K.cast(self.iterations, K.floatx()))) pass t = K.cast(self.iterations + 1, K.floatx()) lr_t = lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): # if a weight tensor (len > 1) use weight normalized parameterization # this is the only part changed w.r.t. keras.optimizers.Adam ps = K.get_variable_shape(p) if len(ps)>1: # get weight normalization parameters V, V_norm, V_scaler, g_param, grad_g, grad_V = get_weightnorm_params_and_grads(p, g) # Adam containers for the 'g' parameter V_scaler_shape = K.get_variable_shape(V_scaler) m_g = K.zeros(V_scaler_shape) v_g = K.zeros(V_scaler_shape) # update g parameters m_g_t = (self.beta_1 * m_g) + (1. - self.beta_1) * grad_g v_g_t = (self.beta_2 * v_g) + (1. - self.beta_2) * K.square(grad_g) new_g_param = g_param - lr_t * m_g_t / (K.sqrt(v_g_t) + self.epsilon) self.updates.append(K.update(m_g, m_g_t)) self.updates.append(K.update(v_g, v_g_t)) # update V parameters m_t = (self.beta_1 * m) + (1. - self.beta_1) * grad_V v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(grad_V) new_V_param = V - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) # if there are constraints we apply them to V, not W if getattr(p, 'constraint', None) is not None: new_V_param = p.constraint(new_V_param) pass # wn param updates --> W updates add_weightnorm_param_updates(self.updates, new_V_param, new_g_param, p, V_scaler) pass else: # do optimization normally m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # apply constraints if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) pass self.updates.append(K.update(p, new_p)) pass pass return self.updates
Example #8
Source File: Eve.py From DeepLearningImplementations with MIT License | 4 votes |
def get_updates(self, params, loss): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.lr if self.inital_decay > 0: lr *= (1. / (1. + self.decay * self.iterations)) t = self.iterations + 1 lr_t = lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)) shapes = [K.get_variable_shape(p) for p in params] ms = [K.zeros(shape) for shape in shapes] vs = [K.zeros(shape) for shape in shapes] f = K.variable(0) d = K.variable(1) self.weights = [self.iterations] + ms + vs + [f, d] cond = K.greater(t, K.variable(1)) small_delta_t = K.switch(K.greater(loss, f), self.small_k + 1, 1. / (self.big_K + 1)) big_delta_t = K.switch(K.greater(loss, f), self.big_K + 1, 1. / (self.small_k + 1)) c_t = K.minimum(K.maximum(small_delta_t, loss / (f + self.epsilon)), big_delta_t) f_t = c_t * f r_t = K.abs(f_t - f) / (K.minimum(f_t, f)) d_t = self.beta_3 * d + (1 - self.beta_3) * r_t f_t = K.switch(cond, f_t, loss) d_t = K.switch(cond, d_t, K.variable(1.)) self.updates.append(K.update(f, f_t)) self.updates.append(K.update(d, d_t)) for p, g, m, v in zip(params, grads, ms, vs): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) p_t = p - lr_t * m_t / (d_t * K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t self.updates.append(K.update(p, new_p)) return self.updates