Python keras.backend.random_uniform() Examples
The following are 23
code examples of keras.backend.random_uniform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: metrics.py From voxelmorph with GNU General Public License v3.0 | 6 votes |
def loss(self, y_true, y_pred): # get the value for the true and fake images disc_true = self.disc(y_true) disc_pred = self.disc(y_pred) # sample a x_hat by sampling along the line between true and pred # z = tf.placeholder(tf.float32, shape=[None, 1]) # shp = y_true.get_shape()[0] # WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!! # self.batch_size does not work, since it's not None!!! alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1]) diff = y_pred - y_true interp = y_true + alpha * diff # take gradient of D(x_hat) gradients = K.gradients(self.disc(interp), [interp])[0] grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1)) # compute loss return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen
Example #2
Source File: temporal_mean_rate_theano.py From snn_toolbox with MIT License | 6 votes |
def softmax_activation(self, mem): """Softmax activation.""" # spiking_samples = k.less_equal(k.random_uniform([self.config.getint( # 'simulation', 'batch_size'), 1]), 300 * self.dt / 1000.) # spiking_neurons = k.T.repeat(spiking_samples, 10, axis=1) # activ = k.T.nnet.softmax(mem) # max_activ = k.max(activ, axis=1, keepdims=True) # output_spikes = k.equal(activ, max_activ).astype(k.floatx()) # output_spikes = k.T.set_subtensor(output_spikes[k.equal( # spiking_neurons, 0).nonzero()], 0.) # new_and_reset_mem = k.T.set_subtensor(mem[spiking_neurons.nonzero()], # 0.) # self.add_update([(self.mem, new_and_reset_mem)]) # return output_spikes return k.T.mul(k.less_equal(k.random_uniform(mem.shape), k.softmax(mem)), self.v_thresh)
Example #3
Source File: per_sample_dropout.py From perfect_match with MIT License | 5 votes |
def call(self, inputs, training=None): def dropped_inputs(): keep_prob = 1. - self.rate tile_shape = tf.expand_dims(tf.shape(inputs)[-1], axis=0) tiled_keep_prob = K.tile(keep_prob, tile_shape) keep_prob = tf.transpose(K.reshape(tiled_keep_prob, [tile_shape[0], tf.shape(keep_prob)[0]])) binary_tensor = tf.floor(keep_prob + K.random_uniform(shape=tf.shape(inputs))) return inputs * binary_tensor return K.in_train_phase(dropped_inputs, inputs, training=training)
Example #4
Source File: tgru_k2_gpu.py From chemical_vae with Apache License 2.0 | 5 votes |
def get_initial_states(self, x): # build an all-zero tensor of shape [(samples, output_dim), (samples, output_dim)] initial_state = K.zeros_like(x) # (samples, timesteps, input_dim) initial_state = K.sum(initial_state, axis=1) # (samples, input_dim) reducer = K.random_uniform((self.input_dim, self.units)) reducer = reducer / K.exp(reducer) initial_state = K.dot(initial_state, reducer) # (samples, output_dim) initial_states = [K.stack([initial_state, initial_state]) for _ in range(len(self.states))] return initial_states
Example #5
Source File: cyclegan.py From MLPrimitives with MIT License | 5 votes |
def _merge_function(self, inputs): alpha = K.random_uniform((64, 1, 1)) return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
Example #6
Source File: samplers.py From DeepIV with MIT License | 5 votes |
def random_laplace(shape, mu=0., b=1.): ''' Draw random samples from a Laplace distriubtion. See: https://en.wikipedia.org/wiki/Laplace_distribution#Generating_random_variables_according_to_the_Laplace_distribution ''' U = K.random_uniform(shape, -0.5, 0.5) return mu - b * K.sign(U) * K.log(1 - 2 * K.abs(U))
Example #7
Source File: wide_residual_network.py From AnomalyDetectionTransformations with MIT License | 5 votes |
def _dense_kernel_initializer(shape, dtype=None): fan_in, fan_out = _compute_fans(shape) stddev = 1. / np.sqrt(fan_in) return K.random_uniform(shape, -stddev, stddev, dtype)
Example #8
Source File: adversarial_utils.py From keras-adversarial with MIT License | 5 votes |
def uniform_latent_sampling(latent_shape, low=0.0, high=1.0): """ Sample from uniform distribution :param latent_shape: batch shape :return: normal samples, shape=(n,)+latent_shape """ return Lambda(lambda x: K.random_uniform((K.shape(x)[0],) + latent_shape, low, high), output_shape=lambda x: ((x[0],) + latent_shape))
Example #9
Source File: resnet_wgan_gp_cifar10_train.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #10
Source File: train_wgan_gp.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #11
Source File: train_wgan_gp.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #12
Source File: train_wgan_gp.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #13
Source File: layers.py From Keras-progressive_growing_of_gans with MIT License | 5 votes |
def __init__(self,mode='mul', strength=0.4, axes=(0,3), normalize=False,**kwargs): super(GDropLayer,self).__init__(**kwargs) assert mode in ('drop', 'mul', 'prop') #self.random = K.random_uniform(1, minval=1, maxval=2147462579, dtype=tf.float32, seed=None, name=None) self.mode = mode self.strength = strength self.axes = [axes] if isinstance(axes, int) else list(axes) self.normalize = normalize # If true, retain overall signal variance. self.gain = None # For experimentation.
Example #14
Source File: custom_layers.py From inpainting-gmcnn-keras with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((1, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #15
Source File: core.py From gandlf with MIT License | 5 votes |
def call(self, x, mask=None): sims = [] for n, sim in zip(self.n, self.similarities): for _ in range(n): batch_size = K.shape(x)[0] idx = K.random_uniform((batch_size,), low=0, high=batch_size, dtype='int32') x_shuffled = K.gather(x, idx) pair_sim = sim(x, x_shuffled) for _ in range(K.ndim(x) - 1): pair_sim = K.expand_dims(pair_sim, dim=1) sims.append(pair_sim) return K.concatenate(sims, axis=-1)
Example #16
Source File: improved_wgan.py From keras-contrib with MIT License | 5 votes |
def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #17
Source File: run_wgan-gp_se.py From se_relativisticgan with MIT License | 5 votes |
def _merge_function (self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #18
Source File: run_rsgan-gp_se.py From se_relativisticgan with MIT License | 5 votes |
def _merge_function (self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1])
Example #19
Source File: StarGAN.py From StarGAN-Keras with MIT License | 5 votes |
def _merge_function(self, inputs): alpha = K.random_uniform((self.bs, 1, 1, 1)) return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
Example #20
Source File: custom_objects.py From keras-efficientnets with MIT License | 5 votes |
def call(self, inputs, training=None): def drop_connect(): keep_prob = 1.0 - self.drop_connect_rate # Compute drop_connect tensor batch_size = tf.shape(inputs)[0] random_tensor = keep_prob random_tensor += K.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype) binary_tensor = tf.floor(random_tensor) output = (inputs / keep_prob) * binary_tensor return output return K.in_train_phase(drop_connect, inputs, training=training)
Example #21
Source File: custom_objects.py From keras-efficientnets with MIT License | 5 votes |
def __call__(self, shape, dtype=None): dtype = dtype or K.floatx() init_range = 1.0 / np.sqrt(shape[1]) return K.random_uniform(shape, -init_range, init_range, dtype=dtype) # Obtained from https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
Example #22
Source File: wgan_gp.py From Keras-GAN with MIT License | 5 votes |
def _merge_function(self, inputs): alpha = K.random_uniform((32, 1, 1, 1)) return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])
Example #23
Source File: temporal_mean_rate_theano.py From snn_toolbox with MIT License | 4 votes |
def init_membrane_potential(self, output_shape=None, mode='zero'): """Initialize membrane potential. Helpful to avoid transient response in the beginning of the simulation. Not needed when reset between frames is turned off, e.g. with a video data set. Parameters ---------- output_shape: Optional[tuple] Output shape mode: str Initialization mode. - ``'uniform'``: Random numbers from uniform distribution in ``[-thr, thr]``. - ``'bias'``: Negative bias. - ``'zero'``: Zero (default). Returns ------- init_mem: ndarray A tensor of ``self.output_shape`` (same as layer). """ if output_shape is None: output_shape = self.output_shape if mode == 'uniform': init_mem = k.random_uniform(output_shape, -self._v_thresh, self._v_thresh) elif mode == 'bias': init_mem = np.zeros(output_shape, k.floatx()) if hasattr(self, 'b'): b = self.get_weights()[1] for i in range(len(b)): init_mem[:, i, Ellipsis] = -b[i] else: # mode == 'zero': init_mem = np.zeros(output_shape, k.floatx()) return init_mem