Python keras.backend.transpose() Examples
The following are 30
code examples of keras.backend.transpose().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #2
Source File: my_layers.py From Attention-Based-Aspect-Extraction with Apache License 2.0 | 6 votes |
def call(self, input_tensor, mask=None): x = input_tensor[0] y = input_tensor[1] mask = mask[0] y = K.transpose(K.dot(self.W, K.transpose(y))) y = K.expand_dims(y, axis=-2) y = K.repeat_elements(y, self.steps, axis=1) eij = K.sum(x * y, axis=-1) if self.bias: b = K.repeat_elements(self.b, self.steps, axis=0) eij += b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) return a
Example #3
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #4
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #5
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #6
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #7
Source File: losses.py From style-transfer with MIT License | 6 votes |
def gram_matrix(x): """ Computes the outer-product of the input tensor x. Input ----- - x: input tensor of shape (C x H x W) Returns ------- - x . x^T Note that this can be computed efficiently if x is reshaped as a tensor of shape (C x H*W). """ # assert K.ndim(x) == 3 if K.image_dim_ordering() == 'th': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) return K.dot(features, K.transpose(features))
Example #8
Source File: losses.py From dts with MIT License | 6 votes |
def acf_loss(y_true, y_pred): """ Loss based on the autocorrelation of residuals (reduce sum). n_lags=10 (fixed) """ n_lags=5 lags = range(1,2) residuals = (y_true - y_pred) # acf = [] # for k in lags: # mean = K.mean(residuals, axis=1, keepdims=True) # autocorrelation_at_lag_k = K.square(K.sum((residuals[:,:-k] - mean) * (residuals[:,k:] - mean), axis=1) / \ # K.sum(K.square(residuals - mean), axis=1)) # acf.append(autocorrelation_at_lag_k) # acf = K.transpose(K.tf.convert_to_tensor(acf)) mean = K.mean(residuals, axis=1, keepdims=True) autocorrelation_at_lag_k = K.square(K.sum((residuals[:, :-1] - mean) * (residuals[:, 1:] - mean), axis=1) / \ K.sum(K.square(residuals - mean), axis=1)) return K.mean(autocorrelation_at_lag_k)
Example #9
Source File: neural_style_transfer.py From pCVR with Apache License 2.0 | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #10
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #11
Source File: my_layers.py From Aspect-level-sentiment with Apache License 2.0 | 6 votes |
def call(self, input_tensor, mask=None): x = input_tensor[0] aspect = input_tensor[1] mask = mask[0] aspect = K.transpose(K.dot(self.W, K.transpose(aspect))) aspect = K.expand_dims(aspect, axis=-2) aspect = K.repeat_elements(aspect, self.steps, axis=1) eij = K.sum(x*aspect, axis=-1) if self.bias: b = K.repeat_elements(self.b, self.steps, axis=0) eij += b eij = K.tanh(eij) a = K.exp(eij) if mask is not None: a *= K.cast(mask, K.floatx()) a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx()) return a
Example #12
Source File: custom.py From graph-representation-learning with MIT License | 6 votes |
def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[-1] if self.transpose: self.kernel = K.transpose(self.tie_to.kernel) else: self.kernel = self.tie_to.kernel if self.use_bias: self.bias = self.add_weight(shape=(self.units,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=self.trainable) else: self.bias = None self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim}) self.built = True
Example #13
Source File: augmented_model.py From tying-wv-and-wc with MIT License | 6 votes |
def __init__(self, vocab_size, sequence_size, setting=None, checkpoint_path="", temperature=10, tying=False): super().__init__(vocab_size, sequence_size, setting, checkpoint_path) self.temperature = temperature self.tying = tying self.gamma = self.setting.gamma if tying: self.model.pop() # remove activation self.model.pop() # remove projection (use self embedding) self.model.add(Lambda(lambda x: K.dot(x, K.transpose(self.embedding.embeddings)))) self.model.add(Activation("softmax"))
Example #14
Source File: augmented_model.py From tying-wv-and-wc with MIT License | 6 votes |
def augmented_loss(self, y_true, y_pred): _y_pred = Activation("softmax")(y_pred) loss = K.categorical_crossentropy(_y_pred, y_true) # y is (batch x seq x vocab) y_indexes = K.argmax(y_true, axis=2) # turn one hot to index. (batch x seq) y_vectors = self.embedding(y_indexes) # lookup the vector (batch x seq x vector_length) #v_length = self.setting.vector_length #y_vectors = K.reshape(y_vectors, (-1, v_length)) #y_t = K.map_fn(lambda v: K.dot(self.embedding.embeddings, K.reshape(v, (-1, 1))), y_vectors) #y_t = K.squeeze(y_t, axis=2) # unknown but necessary operation #y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size)) # vector x embedding dot products (batch x seq x vocab) y_t = tf.tensordot(y_vectors, K.transpose(self.embedding.embeddings), 1) y_t = K.reshape(y_t, (-1, self.sequence_size, self.vocab_size)) # explicitly set shape y_t = K.softmax(y_t / self.temperature) _y_pred_t = Activation("softmax")(y_pred / self.temperature) aug_loss = kullback_leibler_divergence(y_t, _y_pred_t) loss += (self.gamma * self.temperature) * aug_loss return loss
Example #15
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #16
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images
Example #17
Source File: neural_style_transfer.py From Style_Migration_For_Artistic_Font_With_CNN with MIT License | 5 votes |
def gram_matrix(x): # Gram矩阵 assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # 风格损失,是风格图片与结果图片的Gram矩阵之差,并对所有元素求和
Example #18
Source File: model.py From n-beats with MIT License | 5 votes |
def trend_model(thetas, backcast_length, forecast_length, is_forecast): p = thetas.shape[-1] t = linear_space(backcast_length, forecast_length, fwd_looking=is_forecast) t = K.transpose(K.stack([t ** i for i in range(p)], axis=0)) t = K.cast(t, np.float32) return K.dot(thetas, K.transpose(t))
Example #19
Source File: custom.py From graph-representation-learning with MIT License | 5 votes |
def __init__(self, units, tie_to=None, # input layer name for weight-tying transpose=False, # transpose weights from tie_to layer activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(DenseTied, self).__init__(**kwargs) self.units = units # We add these two properties to save the tied weights self.tie_to = tie_to self.transpose = transpose self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.trainable = trainable self.input_spec = InputSpec(min_ndim=2) self.supports_masking = True
Example #20
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram
Example #21
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # the "style loss" is designed to maintain # the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image
Example #22
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x
Example #23
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram
Example #24
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram
Example #25
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x
Example #26
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram
Example #27
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x
Example #28
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # the "style loss" is designed to maintain # the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image
Example #29
Source File: neural_style_transfer.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # the "style loss" is designed to maintain # the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image
Example #30
Source File: neural_doodle.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x