Python sklearn.neural_network.MLPClassifier() Examples

The following are 30 code examples of sklearn.neural_network.MLPClassifier(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.neural_network , or try the search function .
Example #1
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 7 votes vote down vote up
def test_alpha():
    # Test that larger alpha yields weights closer to zero
    X = X_digits_binary[:100]
    y = y_digits_binary[:100]

    alpha_vectors = []
    alpha_values = np.arange(2)
    absolute_sum = lambda x: np.sum(np.abs(x))

    for alpha in alpha_values:
        mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1)
        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]),
                                       absolute_sum(mlp.coefs_[1])]))

    for i in range(len(alpha_values) - 1):
        assert (alpha_vectors[i] > alpha_vectors[i + 1]).all() 
Example #2
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 7 votes vote down vote up
def test_lbfgs_classification():
    # Test lbfgs on classification.
    # It should achieve a score higher than 0.95 for the binary and multi-class
    # versions of the digits dataset.
    for X, y in classification_datasets:
        X_train = X[:150]
        y_train = y[:150]
        X_test = X[150:]

        expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind)

        for activation in ACTIVATION_TYPES:
            mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50,
                                max_iter=150, shuffle=True, random_state=1,
                                activation=activation)
            mlp.fit(X_train, y_train)
            y_predict = mlp.predict(X_test)
            assert_greater(mlp.score(X_train, y_train), 0.95)
            assert_equal((y_predict.shape[0], y_predict.dtype.kind),
                         expected_shape_dtype) 
Example #3
Source File: TMDetection.py    From US-TransportationMode with MIT License 6 votes vote down vote up
def neural_network(self, sensors_set):
        features = list(self.dataset.get_sensors_set_features(sensors_set))
        print("NEURAL NETWORK.....")
        print("CLASSIFICATION BASED ON THESE SENSORS: ", self.dataset.get_remained_sensors(sensors_set))
        print("NUMBER OF FEATURES: ", len(features))
        train_features, train_classes, test_features, test_classes = self.__get_sets_for_classification(
            self.dataset.get_train, self.dataset.get_test, features)
        train_features_scaled, test_features_scaled = util.scale_features(train_features, test_features)

        classifier_nn = MLPClassifier(hidden_layer_sizes=(const.PAR_NN_NEURONS[sensors_set],),
                                      alpha=const.PAR_NN_ALPHA[sensors_set], max_iter=const.PAR_NN_MAX_ITER,
                                      tol=const.PAR_NN_TOL)
        classifier_nn.fit(train_features_scaled, train_classes)
        test_prediction = classifier_nn.predict(test_features_scaled)
        acc = accuracy_score(test_classes, test_prediction)
        print("ACCURACY : " + str(acc))
        print("END NEURAL NETWORK")

        if not os.path.exists(const.DIR_RESULTS):
            os.makedirs(const.DIR_RESULTS)
        file_content = "acc\n" + str(acc)
        with open(const.DIR_RESULTS + "/" + str(sensors_set) + const.FILE_NEURAL_NETWORK_RESULTS, 'w') as f:
            f.write(file_content)

    # support vector machine algorithm training on training al train set and test on all test set 
Example #4
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_learning_rate_warmstart():
    # Tests that warm_start reuse past solutions.
    X = [[3, 2], [1, 6], [5, 6], [-2, -4]]
    y = [1, 1, 1, 0]
    for learning_rate in ["invscaling", "constant"]:
        mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4,
                            learning_rate=learning_rate, max_iter=1,
                            power_t=0.25, warm_start=True)
        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
            prev_eta = mlp._optimizer.learning_rate
            mlp.fit(X, y)
            post_eta = mlp._optimizer.learning_rate

        if learning_rate == 'constant':
            assert_equal(prev_eta, post_eta)
        elif learning_rate == 'invscaling':
            assert_equal(mlp.learning_rate_init / pow(8 + 1, mlp.power_t),
                         post_eta) 
Example #5
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_multilabel_classification():
    # Test that multi-label classification works as expected.
    # test fit method
    X, y = make_multilabel_classification(n_samples=50, random_state=0,
                                          return_indicator=True)
    mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5,
                        max_iter=150, random_state=0, activation='logistic',
                        learning_rate_init=0.2)
    mlp.fit(X, y)
    assert_greater(mlp.score(X, y), 0.97)

    # test partial fit method
    mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150,
                        random_state=0, activation='logistic', alpha=1e-5,
                        learning_rate_init=0.2)
    for i in range(100):
        mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4])
    assert_greater(mlp.score(X, y), 0.9)

    # Make sure early stopping still work now that spliting is stratified by
    # default (it is disabled for multilabel classification)
    mlp = MLPClassifier(early_stopping=True)
    mlp.fit(X, y).predict(X) 
Example #6
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_partial_fit_classification():
    # Test partial_fit on classification.
    # `partial_fit` should yield the same results as 'fit' for binary and
    # multi-class classification.
    for X, y in classification_datasets:
        X = X
        y = y
        mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1,
                            tol=0, alpha=1e-5, learning_rate_init=0.2)

        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        pred1 = mlp.predict(X)
        mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5,
                            learning_rate_init=0.2)
        for i in range(100):
            mlp.partial_fit(X, y, classes=np.unique(y))
        pred2 = mlp.predict(X)
        assert_array_equal(pred1, pred2)
        assert_greater(mlp.score(X, y), 0.95) 
Example #7
Source File: test_uncertainty.py    From cxplain with MIT License 6 votes vote down vote up
def test_mnist_confidence_levels_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model = MLPClassifier(solver='lbfgs', alpha=1e-5,
                                        hidden_layer_sizes=(64, 32), random_state=1)
        explained_model.fit(x_train.reshape((len(x_train), -1)), y_train)

        model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2, verbose=0,
                                        batch_size=256, learning_rate=0.001, num_epochs=3,
                                        early_stopping_patience=128)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        confidence_levels = [0.0, 1.0, 1.01, -0.01]
        for confidence_level in confidence_levels:
            downsample_factor = (2, 2)
            explainer = CXPlain(explained_model, model_builder, masking_operation, loss, num_models=2,
                                downsample_factors=downsample_factor, flatten_for_explained_model=True)

            explainer.fit(x_train, y_train)

            with self.assertRaises(ValueError):
                _ = explainer.predict(x_test, confidence_level=confidence_level) 
Example #8
Source File: net.py    From color_recognizer with MIT License 6 votes vote down vote up
def learn():
    print('Loading previous dataset to learn')
    n_files = 0
    training_set = list()
    training_labels = list()
    for file in os.listdir(data_dir):
        if file.endswith(".jpg"):
            img_file = os.path.join(data_dir, file)
            label_name = str(file).split('_')
            training_set.append(cv2.imread(img_file, 1).reshape(6912))
            training_labels.append(label_name[0])
            n_files += 1
    
    x = training_set
    y = tools.integerize(training_labels)

    net = MLPClassifier()

    print('\nLearning...\n')
    net.fit(x, y)

    print('MLP has already learned previous instances')

    return net 
Example #9
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_predict_proba_binary():
    # Test that predict_proba works as expected for binary class.
    X = X_digits_binary[:50]
    y = y_digits_binary[:50]

    clf = MLPClassifier(hidden_layer_sizes=5, activation='logistic',
                        random_state=1)
    with ignore_warnings(category=ConvergenceWarning):
        clf.fit(X, y)
    y_proba = clf.predict_proba(X)
    y_log_proba = clf.predict_log_proba(X)

    (n_samples, n_classes) = y.shape[0], 2

    proba_max = y_proba.argmax(axis=1)
    proba_log_max = y_log_proba.argmax(axis=1)

    assert_equal(y_proba.shape, (n_samples, n_classes))
    assert_array_equal(proba_max, proba_log_max)
    assert_array_equal(y_log_proba, np.log(y_proba))

    assert_equal(roc_auc_score(y, y_proba[:, 1]), 1.0) 
Example #10
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_predict_proba_multilabel():
    # Test that predict_proba works as expected for multilabel.
    # Multilabel should not use softmax which makes probabilities sum to 1
    X, Y = make_multilabel_classification(n_samples=50, random_state=0,
                                          return_indicator=True)
    n_samples, n_classes = Y.shape

    clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30,
                        random_state=0)
    clf.fit(X, Y)
    y_proba = clf.predict_proba(X)

    assert_equal(y_proba.shape, (n_samples, n_classes))
    assert_array_equal(y_proba > 0.5, Y)

    y_log_proba = clf.predict_log_proba(X)
    proba_max = y_proba.argmax(axis=1)
    proba_log_max = y_log_proba.argmax(axis=1)

    assert_greater((y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1), 1e-10)
    assert_array_equal(proba_max, proba_log_max)
    assert_array_equal(y_log_proba, np.log(y_proba)) 
Example #11
Source File: test_explanation_model.py    From cxplain with MIT License 6 votes vote down vote up
def test_time_series_valid(self):
        num_samples = 1024
        fixed_length = 99
        (x_train, y_train), (x_test, y_test) = TestUtil.get_random_fixed_length_dataset(num_samples=num_samples,
                                                                                        fixed_length=fixed_length)

        model_builder = RNNModelBuilder(with_embedding=False, num_layers=2, num_units=32,
                                        activation="relu", p_dropout=0.2, verbose=0,
                                        batch_size=32, learning_rate=0.001, num_epochs=2,
                                        early_stopping_patience=128)

        explained_model = MLPClassifier()
        explained_model.fit(x_train.reshape((-1, np.prod(x_train.shape[1:]))), y_train)

        masking_operation = ZeroMasking()
        loss = binary_crossentropy
        explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                            flatten_for_explained_model=True)

        explainer.fit(x_train, y_train)
        eval_score = explainer.score(x_test, y_test)
        train_score = explainer.get_last_fit_score()
        median = explainer.predict(x_test)
        self.assertTrue(median.shape == x_test.shape) 
Example #12
Source File: test_explanation_model.py    From cxplain with MIT License 6 votes vote down vote up
def test_mnist_unet_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model = MLPClassifier(solver='lbfgs', alpha=1e-5,
                                        hidden_layer_sizes=(64, 32), random_state=1)
        explained_model.fit(x_train.reshape((len(x_train), -1)), y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor, flatten_for_explained_model=True)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape) 
Example #13
Source File: MalGAN__v3.py    From Malware-GAN with GNU General Public License v3.0 6 votes vote down vote up
def build_blackbox_detector(self):

        if self.blackbox is 'RF':
            blackbox_detector = RandomForestClassifier(n_estimators=100, max_depth=3, random_state=1)
        elif self.blackbox is 'SVM':
            blackbox_detector = svm.SVC()
        elif self.blackbox is 'LR':
            blackbox_detector = linear_model.LogisticRegression()
        elif self.blackbox is 'DT':
            blackbox_detector = tree.DecisionTreeRegressor()
        elif self.blackbox is 'MLP':
            blackbox_detector = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
                                              solver='sgd', verbose=0, tol=1e-4, random_state=1,
                                              learning_rate_init=.1)
        elif self.blackbox is 'VOTE':
            blackbox_detector = VOTEClassifier()

        return blackbox_detector 
Example #14
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_warm_start():
    X = X_iris
    y = y_iris

    y_2classes = np.array([0] * 75 + [1] * 75)
    y_3classes = np.array([0] * 40 + [1] * 40 + [2] * 70)
    y_3classes_alt = np.array([0] * 50 + [1] * 50 + [3] * 50)
    y_4classes = np.array([0] * 37 + [1] * 37 + [2] * 38 + [3] * 38)
    y_5classes = np.array([0] * 30 + [1] * 30 + [2] * 30 + [3] * 30 + [4] * 30)

    # No error raised
    clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs',
                        warm_start=True).fit(X, y)
    clf.fit(X, y)
    clf.fit(X, y_3classes)

    for y_i in (y_2classes, y_3classes_alt, y_4classes, y_5classes):
        clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs',
                            warm_start=True).fit(X, y)
        message = ('warm_start can only be used where `y` has the same '
                   'classes as in the previous call to fit.'
                   ' Previously got [0 1 2], `y` has %s' % np.unique(y_i))
        assert_raise_message(ValueError, message, clf.fit, X, y_i) 
Example #15
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_n_iter_no_change():
    # test n_iter_no_change using binary data set
    # the classifying fitting process is not prone to loss curve fluctuations
    X = X_digits_binary[:100]
    y = y_digits_binary[:100]
    tol = 0.01
    max_iter = 3000

    # test multiple n_iter_no_change
    for n_iter_no_change in [2, 5, 10, 50, 100]:
        clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd',
                            n_iter_no_change=n_iter_no_change)
        clf.fit(X, y)

        # validate n_iter_no_change
        assert_equal(clf._no_improvement_count, n_iter_no_change + 1)
        assert_greater(max_iter, clf.n_iter_) 
Example #16
Source File: test_mlp.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_n_iter_no_change_inf():
    # test n_iter_no_change using binary data set
    # the fitting process should go to max_iter iterations
    X = X_digits_binary[:100]
    y = y_digits_binary[:100]

    # set a ridiculous tolerance
    # this should always trigger _update_no_improvement_count()
    tol = 1e9

    # fit
    n_iter_no_change = np.inf
    max_iter = 3000
    clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd',
                        n_iter_no_change=n_iter_no_change)
    clf.fit(X, y)

    # validate n_iter_no_change doesn't cause early stopping
    assert_equal(clf.n_iter_, max_iter)

    # validate _update_no_improvement_count() was always triggered
    assert_equal(clf._no_improvement_count, clf.n_iter_ - 1) 
Example #17
Source File: classifier.py    From libfaceid with MIT License 6 votes vote down vote up
def __init__(self, classifier=FaceClassifierModels.DEFAULT):
        self._clf = None
        if classifier == FaceClassifierModels.LINEAR_SVM:
            self._clf = SVC(C=1.0, kernel="linear", probability=True)
        elif classifier == FaceClassifierModels.NAIVE_BAYES:
            self._clf = GaussianNB()
        elif classifier == FaceClassifierModels.RBF_SVM:
            self._clf = SVC(C=1, kernel='rbf', probability=True, gamma=2)
        elif classifier == FaceClassifierModels.NEAREST_NEIGHBORS:
            self._clf = KNeighborsClassifier(1)
        elif classifier == FaceClassifierModels.DECISION_TREE:
            self._clf = DecisionTreeClassifier(max_depth=5)
        elif classifier == FaceClassifierModels.RANDOM_FOREST:
            self._clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)
        elif classifier == FaceClassifierModels.NEURAL_NET:
            self._clf = MLPClassifier(alpha=1)
        elif classifier == FaceClassifierModels.ADABOOST:
            self._clf = AdaBoostClassifier()
        elif classifier == FaceClassifierModels.QDA:
            self._clf = QuadraticDiscriminantAnalysis()
        print("classifier={}".format(FaceClassifierModels(classifier))) 
Example #18
Source File: test_pipeline.py    From lale with Apache License 2.0 6 votes vote down vote up
def test_fit2(self):
        import warnings
        warnings.filterwarnings(action="ignore")
        from lale.lib.sklearn import MinMaxScaler, MLPClassifier
        pipeline = Batching(operator = MinMaxScaler() >> MinMaxScaler(), batch_size = 112)
        trained = pipeline.fit(self.X_train, self.y_train)
        lale_transforms = trained.transform(self.X_test)

        from sklearn.preprocessing import MinMaxScaler
        prep = MinMaxScaler()
        trained_prep = prep.partial_fit(self.X_train, self.y_train)
        X_transformed = trained_prep.transform(self.X_train)

        clf = MinMaxScaler()
        import numpy as np
        trained_clf = clf.partial_fit(X_transformed, self.y_train)
        sklearn_transforms = trained_clf.transform(trained_prep.transform(self.X_test))

        for i in range(5):
            for j in range(2):
                self.assertAlmostEqual(lale_transforms[i, j], sklearn_transforms[i, j]) 
Example #19
Source File: test_pipeline.py    From lale with Apache License 2.0 6 votes vote down vote up
def test_fit1(self):
        import warnings
        warnings.filterwarnings(action="ignore")
        from lale.lib.sklearn import MinMaxScaler, MLPClassifier
        pipeline = Batching(operator = MinMaxScaler() >> MLPClassifier(random_state=42), batch_size = 112)
        trained = pipeline.fit(self.X_train, self.y_train)
        predictions = trained.predict(self.X_test)
        lale_accuracy = accuracy_score(self.y_test, predictions)

        from sklearn.preprocessing import MinMaxScaler
        from sklearn.neural_network import MLPClassifier
        prep = MinMaxScaler()
        trained_prep = prep.partial_fit(self.X_train, self.y_train)
        X_transformed = trained_prep.transform(self.X_train)

        clf = MLPClassifier(random_state=42)
        import numpy as np
        trained_clf = clf.partial_fit(X_transformed, self.y_train, classes = np.unique(self.y_train))
        predictions = trained_clf.predict(trained_prep.transform(self.X_test))
        sklearn_accuracy = accuracy_score(self.y_test, predictions)

        self.assertEqual(lale_accuracy, sklearn_accuracy) 
Example #20
Source File: test_pipeline.py    From lale with Apache License 2.0 6 votes vote down vote up
def test_fit(self):
        import warnings
        warnings.filterwarnings(action="ignore")
        from lale.lib.sklearn import MinMaxScaler, MLPClassifier
        pipeline = NoOp() >> Batching(operator = MinMaxScaler() >> MLPClassifier(random_state=42), batch_size = 112)
        trained = pipeline.fit(self.X_train, self.y_train)
        predictions = trained.predict(self.X_test)
        lale_accuracy = accuracy_score(self.y_test, predictions)

        from sklearn.preprocessing import MinMaxScaler
        from sklearn.neural_network import MLPClassifier
        prep = MinMaxScaler()
        trained_prep = prep.partial_fit(self.X_train, self.y_train)
        X_transformed = trained_prep.transform(self.X_train)

        clf = MLPClassifier(random_state=42)
        import numpy as np
        trained_clf = clf.partial_fit(X_transformed, self.y_train, classes = np.unique(self.y_train))
        predictions = trained_clf.predict(trained_prep.transform(self.X_test))
        sklearn_accuracy = accuracy_score(self.y_test, predictions)

        self.assertEqual(lale_accuracy, sklearn_accuracy) 
Example #21
Source File: MLP_nets.py    From DeepLearning_IDS with MIT License 6 votes vote down vote up
def __init__(self):
        #MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False,
        #       epsilon=1e-08, hidden_layer_sizes=(5, 2), learning_rate='constant',
        #       learning_rate_init=0.001, max_iter=200, momentum=0.9,
        #       nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
        #       solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
        #       warm_start=False)

        #hidden_layer =  1x (# hidden layers - 2) . Each value: units in the hidden layer

        # With either algorithm as solver:
        #   -  Stochastic Gradient Descent
        #   -  Adam:  refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba
        #           -->  works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. 
        #   -  L-BFGS: optimizer in the family of quasi-Newton methods.
        #           --> For small datasets, however, ‘lbfgs’ can converge faster and perform better.
        
        self.classifier = MLPClassifier(solver='adam', alpha=1e-5, hidden_layer_sizes=(64), random_state=1, max_iter = 1500, verbose = True) 
Example #22
Source File: testScoreWithAdapaSklearn.py    From nyoka with Apache License 2.0 6 votes vote down vote up
def test_38_mlp_classifier(self):
        print("\ntest 38 (mlp classifier without preprocessing)[multi-class]\n")
        X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification()

        model = MLPClassifier()
        pipeline_obj = Pipeline([
            ("model", model)
        ])
        pipeline_obj.fit(X,y)
        file_name = 'test38sklearn.pmml'
        
        skl_to_pmml(pipeline_obj, features, target, file_name)
        model_name  = self.adapa_utility.upload_to_zserver(file_name)
        predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
        model_pred = pipeline_obj.predict(X_test)
        model_prob = pipeline_obj.predict_proba(X_test)
        self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
        self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True) 
Example #23
Source File: testScoreWithAdapaSklearn.py    From nyoka with Apache License 2.0 6 votes vote down vote up
def test_39_mlp_classifier(self):
        print("\ntest 39 (mlp classifier without preprocessing)[binary-class]\n")
        X, X_test, y, features, target, test_file = self.data_utility.get_data_for_binary_classification()

        model = MLPClassifier()
        pipeline_obj = Pipeline([
            ("model", model)
        ])
        pipeline_obj.fit(X,y)
        file_name = 'test39sklearn.pmml'
        
        skl_to_pmml(pipeline_obj, features, target, file_name)
        model_name  = self.adapa_utility.upload_to_zserver(file_name)
        predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file)
        model_pred = pipeline_obj.predict(X_test)
        model_prob = pipeline_obj.predict_proba(X_test)
        self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
        self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True) 
Example #24
Source File: exp.py    From Malware-GAN with GNU General Public License v3.0 5 votes vote down vote up
def build_blackbox_detector(self):

        if self.blackbox is 'MLP':
            blackbox_detector = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
                                              solver='sgd', verbose=0, tol=1e-4, random_state=1,
                                              learning_rate_init=.1)
        return blackbox_detector 
Example #25
Source File: test_pipeline.py    From lale with Apache License 2.0 5 votes vote down vote up
def test_fit3(self):
        from lale.lib.sklearn import MinMaxScaler, MLPClassifier, PCA
        pipeline = PCA() >> Batching(operator = MinMaxScaler() >> MLPClassifier(random_state=42), 
                                                 batch_size = 10)        
        trained = pipeline.fit(self.X_train, self.y_train)
        predictions = trained.predict(self.X_test) 
Example #26
Source File: VOTEClassifier.py    From Malware-GAN with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self):
        self.RF = RandomForestClassifier(n_estimators=50, max_depth=5, random_state=1)
        self.SVM = svm.SVC()
        self.LR = linear_model.LogisticRegression()
        self.DT = tree.DecisionTreeRegressor()
        self.MLP = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
                                 solver='sgd', verbose=0, tol=1e-4, random_state=1,
                                 learning_rate_init=.1)
        self.alpha = 0.2 * np.ones((5, )) 
Example #27
Source File: trained_attack_models.py    From privacy with Apache License 2.0 5 votes vote down vote up
def mlp(verbose: int = 0, n_jobs: int = 1):
  """Setup a MLP pipeline with cross-validation."""
  mlpmodel = neural_network.MLPClassifier()

  param_grid = {
      'hidden_layer_sizes': [(64,), (32, 32)],
      'solver': ['adam'],
      'alpha': [0.0001, 0.001, 0.01],
  }
  pipe = model_selection.GridSearchCV(
      mlpmodel, param_grid=param_grid, cv=3, n_jobs=n_jobs, iid=False,
      verbose=verbose)
  return pipe 
Example #28
Source File: test_event_classifier.py    From ctapipe with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_prepare_model_MLP():
    cam_id_list = ["FlashCam", "ASTRICam"]
    feature_list = {
        "FlashCam": [
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
        ],
        "ASTRICam": [
            [10, 1],
            [20, 2],
            [30, 3],
            [9, 0.9],
            [1, 10],
            [2, 20],
            [3, 30],
            [0.9, 9],
        ],
    }
    target_list = {
        "FlashCam": ["a", "a", "a", "a", "b", "b", "b", "b"],
        "ASTRICam": ["a", "a", "a", "a", "b", "b", "b", "b"],
    }

    clf = EventClassifier(
        classifier=MLPClassifier, cam_id_list=cam_id_list, max_iter=400
    )
    scaled_features, scaler = EventClassifier.scale_features(cam_id_list, feature_list)

    # clf.fit(feature_list, target_list)
    clf.fit(scaled_features, target_list)
    return clf, cam_id_list, scaler 
Example #29
Source File: MLP_nets.py    From DeepLearning_IDS with MIT License 5 votes vote down vote up
def __init__(self, *layers, a =1e-5, max_i = 1500):
        self.classifier = MLPClassifier(solver='adam', alpha=a, *layers, random_state=1, max_iter = max_i, verbose = True) 
Example #30
Source File: mp_train.py    From atap with Apache License 2.0 5 votes vote down vote up
def fit_multilayer_perceptron(path, saveto=None, cv=12):
    model = Pipeline([
        ('norm', TextNormalizer()),
        ('tfidf', TfidfVectorizer(tokenizer=identity, lowercase=False)),
        ('clf', MLPClassifier(hidden_layer_sizes=(10,10), early_stopping=True))
    ])

    if saveto is None:
        saveto = "multilayer_perceptron_{}.pkl".format(time.time())

    scores, delta = train_model(path, model, saveto, cv)
    logger.info((
        "multilayer perceptron training took {:0.2f} seconds "
        "with an average score of {:0.3f}"
    ).format(delta, scores.mean()))