Python blocks.main_loop.MainLoop() Examples
The following are 18
code examples of blocks.main_loop.MainLoop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
blocks.main_loop
, or try the search function
.
Example #1
Source File: main.py From attention-lvcsr with MIT License | 6 votes |
def train(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): model, algorithm, data, extensions = initialize_all( config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start) # Save the config into the status log = NDarrayLog() log.status['_config'] = repr(config) main_loop = MainLoop( model=model, log=log, algorithm=algorithm, data_stream=data.get_stream("train"), extensions=extensions) main_loop.run()
Example #2
Source File: test_plot.py From blocks-extras with MIT License | 6 votes |
def test_load_log(): log = TrainingLog() log[0]['channel0'] = 0 # test simple TrainingLog pickles with tempfile.NamedTemporaryFile() as f: dump(log, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0 # test MainLoop pickles main_loop = MainLoop(model=None, data_stream=None, algorithm=None, log=log) with tempfile.NamedTemporaryFile() as f: dump(main_loop, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0
Example #3
Source File: plot.py From blocks-extras with MIT License | 6 votes |
def load_log(fname): """Load a :class:`TrainingLog` object from disk. This function automatically handles various file formats that contain an instance of an :class:`TrainingLog`. This includes a pickled Log object, a pickled :class:`MainLoop` or an experiment dump (TODO). """ with change_recursion_limit(config.recursion_limit): with open(fname, 'rb') as f: from_disk = load(f) # TODO: Load "dumped" experiments if isinstance(from_disk, TrainingLog): log = from_disk elif isinstance(from_disk, MainLoop): log = from_disk.log del from_disk else: raise ValueError("Could not load '{}': Unrecognized content.") return log
Example #4
Source File: test_plot.py From attention-lvcsr with MIT License | 6 votes |
def test_load_log(): log = TrainingLog() log[0]['channel0'] = 0 # test simple TrainingLog pickles with tempfile.NamedTemporaryFile() as f: dump(log, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0 # test MainLoop pickles main_loop = MainLoop(model=None, data_stream=None, algorithm=None, log=log) with tempfile.NamedTemporaryFile() as f: dump(main_loop, f) f.flush() log2 = plot.load_log(f.name) assert log2[0]['channel0'] == 0
Example #5
Source File: plot.py From attention-lvcsr with MIT License | 6 votes |
def load_log(fname): """Load a :class:`TrainingLog` object from disk. This function automatically handles various file formats that contain an instance of an :class:`TrainingLog`. This includes a pickled Log object, a pickled :class:`MainLoop` or an experiment dump (TODO). """ with change_recursion_limit(config.recursion_limit): with open(fname, 'rb') as f: from_disk = load(f) # TODO: Load "dumped" experiments if isinstance(from_disk, TrainingLog): log = from_disk elif isinstance(from_disk, MainLoop): log = from_disk.log del from_disk else: raise ValueError("Could not load '{}': Unrecognized content.") return log
Example #6
Source File: test_main_loop.py From attention-lvcsr with MIT License | 6 votes |
def test_main_loop(): old_config_profile_value = config.profile config.profile = True main_loop = MainLoop( MockAlgorithm(), IterableDataset(range(10)).get_example_stream(), extensions=[WriteBatchExtension(), FinishAfter(after_n_epochs=2)]) main_loop.run() assert_raises(AttributeError, getattr, main_loop, 'model') assert main_loop.log.status['iterations_done'] == 20 assert main_loop.log.status['_epoch_ends'] == [10, 20] assert len(main_loop.log) == 20 for i in range(20): assert main_loop.log[i + 1]['batch'] == {'data': i % 10} config.profile = old_config_profile_value
Example #7
Source File: test_training.py From attention-lvcsr with MIT License | 5 votes |
def test_shared_variable_modifier_two_parameters(): weights = numpy.array([-1, 1], dtype=theano.config.floatX) features = [numpy.array(f, dtype=theano.config.floatX) for f in [[1, 2], [3, 4], [5, 6]]] targets = [(weights * f).sum() for f in features] n_batches = 3 dataset = IterableDataset(dict(features=features, targets=targets)) x = tensor.vector('features') y = tensor.scalar('targets') W = shared_floatx([0, 0], name='W') cost = ((x * W).sum() - y) ** 2 cost.name = 'cost' step_rule = Scale(0.001) sgd = GradientDescent(cost=cost, parameters=[W], step_rule=step_rule) modifier = SharedVariableModifier( step_rule.learning_rate, lambda _, val: numpy.cast[theano.config.floatX](val * 0.2)) main_loop = MainLoop( model=None, data_stream=dataset.get_example_stream(), algorithm=sgd, extensions=[FinishAfter(after_n_epochs=1), modifier]) main_loop.run() new_value = step_rule.learning_rate.get_value() assert_allclose(new_value, 0.001 * 0.2 ** n_batches, atol=1e-5)
Example #8
Source File: test_training.py From attention-lvcsr with MIT License | 5 votes |
def test_shared_variable_modifier(): weights = numpy.array([-1, 1], dtype=theano.config.floatX) features = [numpy.array(f, dtype=theano.config.floatX) for f in [[1, 2], [3, 4], [5, 6]]] targets = [(weights * f).sum() for f in features] n_batches = 3 dataset = IterableDataset(dict(features=features, targets=targets)) x = tensor.vector('features') y = tensor.scalar('targets') W = shared_floatx([0, 0], name='W') cost = ((x * W).sum() - y) ** 2 cost.name = 'cost' step_rule = Scale(0.001) sgd = GradientDescent(cost=cost, parameters=[W], step_rule=step_rule) main_loop = MainLoop( model=None, data_stream=dataset.get_example_stream(), algorithm=sgd, extensions=[ FinishAfter(after_n_epochs=1), SharedVariableModifier( step_rule.learning_rate, lambda n: numpy.cast[theano.config.floatX](10. / n) )]) main_loop.run() assert_allclose(step_rule.learning_rate.get_value(), numpy.cast[theano.config.floatX](10. / n_batches))
Example #9
Source File: test_main_loop.py From attention-lvcsr with MIT License | 5 votes |
def test_training_resumption(): def do_test(with_serialization): data_stream = IterableDataset(range(10)).get_example_stream() main_loop = MainLoop( MockAlgorithm(), data_stream, extensions=[WriteBatchExtension(), FinishAfter(after_n_batches=14)]) main_loop.run() assert main_loop.log.status['iterations_done'] == 14 if with_serialization: main_loop = cPickle.loads(cPickle.dumps(main_loop)) finish_after = unpack( [ext for ext in main_loop.extensions if isinstance(ext, FinishAfter)], singleton=True) finish_after.add_condition( ["after_batch"], predicate=lambda log: log.status['iterations_done'] == 27) main_loop.run() assert main_loop.log.status['iterations_done'] == 27 assert main_loop.log.status['epochs_done'] == 2 for i in range(27): assert main_loop.log[i + 1]['batch'] == {"data": i % 10} do_test(False) do_test(True)
Example #10
Source File: utils.py From blocks-char-rnn with MIT License | 5 votes |
def __init__(self, **kwargs): super(MainLoop, self).__init__(**kwargs)
Example #11
Source File: __init__.py From blocks-examples with MIT License | 5 votes |
def main(save_to, num_batches): mlp = MLP([Tanh(), Identity()], [1, 10, 1], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), seed=1) mlp.initialize() x = tensor.vector('numbers') y = tensor.vector('roots') cost = SquaredError().apply(y[:, None], mlp.apply(x[:, None])) cost.name = "cost" main_loop = MainLoop( GradientDescent( cost=cost, parameters=ComputationGraph(cost).parameters, step_rule=Scale(learning_rate=0.001)), get_data_stream(range(100)), model=Model(cost), extensions=[ Timing(), FinishAfter(after_n_batches=num_batches), DataStreamMonitoring( [cost], get_data_stream(range(100, 200)), prefix="test"), TrainingDataMonitoring([cost], after_epoch=True), Checkpoint(save_to), Printing()]) main_loop.run() return main_loop
Example #12
Source File: test_monitoring.py From attention-lvcsr with MIT License | 4 votes |
def test_training_data_monitoring(): weights = numpy.array([-1, 1], dtype=theano.config.floatX) features = [numpy.array(f, dtype=theano.config.floatX) for f in [[1, 2], [3, 4], [5, 6]]] targets = [(weights * f).sum() for f in features] n_batches = 3 dataset = IterableDataset(dict(features=features, targets=targets)) x = tensor.vector('features') y = tensor.scalar('targets') W = shared_floatx([0, 0], name='W') V = shared_floatx(7, name='V') W_sum = W.sum().copy(name='W_sum') cost = ((x * W).sum() - y) ** 2 cost.name = 'cost' class TrueCostExtension(TrainingExtension): def before_batch(self, data): self.main_loop.log.current_row['true_cost'] = ( ((W.get_value() * data["features"]).sum() - data["targets"]) ** 2) main_loop = MainLoop( model=None, data_stream=dataset.get_example_stream(), algorithm=GradientDescent(cost=cost, parameters=[W], step_rule=Scale(0.001)), extensions=[ FinishAfter(after_n_epochs=1), TrainingDataMonitoring([W_sum, cost, V], prefix="train1", after_batch=True), TrainingDataMonitoring([aggregation.mean(W_sum), cost], prefix="train2", after_epoch=True), TrueCostExtension()]) main_loop.run() # Check monitoring of a shared varible assert_allclose(main_loop.log.current_row['train1_V'], 7.0) for i in range(n_batches): # The ground truth is written to the log before the batch is # processed, where as the extension writes after the batch is # processed. This is why the iteration numbers differs here. assert_allclose(main_loop.log[i]['true_cost'], main_loop.log[i + 1]['train1_cost']) assert_allclose( main_loop.log[n_batches]['train2_cost'], sum([main_loop.log[i]['true_cost'] for i in range(n_batches)]) / n_batches) assert_allclose( main_loop.log[n_batches]['train2_W_sum'], sum([main_loop.log[i]['train1_W_sum'] for i in range(1, n_batches + 1)]) / n_batches)
Example #13
Source File: test_saveload.py From attention-lvcsr with MIT License | 4 votes |
def test_checkpointing(): # Create a main loop and checkpoint it mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.), use_bias=False) mlp.initialize() W = mlp.linear_transformations[0].W x = tensor.vector('data') cost = mlp.apply(x).mean() data = numpy.random.rand(10, 10).astype(theano.config.floatX) data_stream = IterableDataset(data).get_example_stream() main_loop = MainLoop( data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[FinishAfter(after_n_batches=5), Checkpoint('myweirdmodel.tar', parameters=[W])] ) main_loop.run() # Load it again old_value = W.get_value() W.set_value(old_value * 2) main_loop = MainLoop( model=Model(cost), data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[Load('myweirdmodel.tar')] ) main_loop.extensions[0].main_loop = main_loop main_loop._run_extensions('before_training') assert_allclose(W.get_value(), old_value) # Make sure things work too if the model was never saved before main_loop = MainLoop( model=Model(cost), data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[Load('mynonexisting.tar')] ) main_loop.extensions[0].main_loop = main_loop main_loop._run_extensions('before_training') # Cleaning if os.path.exists('myweirdmodel.tar'): os.remove('myweirdmodel.tar')
Example #14
Source File: __init__.py From blocks-examples with MIT License | 4 votes |
def main(save_to, num_epochs): mlp = MLP([Tanh(), Softmax()], [784, 100, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') probs = mlp.apply(x) cost = CategoricalCrossEntropy().apply(y.flatten(), probs) error_rate = MisclassificationRate().apply(y.flatten(), probs) cg = ComputationGraph([cost]) W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables) cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum() cost.name = 'final_cost' mnist_train = MNIST(("train",)) mnist_test = MNIST(("test",)) algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=0.1)) extensions = [Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring( [cost, error_rate], Flatten( DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features',)), prefix="test"), TrainingDataMonitoring( [cost, error_rate, aggregation.mean(algorithm.total_gradient_norm)], prefix="train", after_epoch=True), Checkpoint(save_to), Printing()] if BLOCKS_EXTRAS_AVAILABLE: extensions.append(Plot( 'MNIST example', channels=[ ['test_final_cost', 'test_misclassificationrate_apply_error_rate'], ['train_total_gradient_norm']])) main_loop = MainLoop( algorithm, Flatten( DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features',)), model=Model(cost), extensions=extensions) main_loop.run()
Example #15
Source File: train_celeba_classifier.py From discgen with MIT License | 4 votes |
def run(): streams = create_celeba_streams(training_batch_size=100, monitoring_batch_size=500, include_targets=True) main_loop_stream = streams[0] train_monitor_stream = streams[1] valid_monitor_stream = streams[2] cg, bn_dropout_cg = create_training_computation_graphs() # Compute parameter updates for the batch normalization population # statistics. They are updated following an exponential moving average. pop_updates = get_batch_normalization_updates(bn_dropout_cg) decay_rate = 0.05 extra_updates = [(p, m * decay_rate + p * (1 - decay_rate)) for p, m in pop_updates] # Prepare algorithm step_rule = Adam() algorithm = GradientDescent(cost=bn_dropout_cg.outputs[0], parameters=bn_dropout_cg.parameters, step_rule=step_rule) algorithm.add_updates(extra_updates) # Prepare monitoring cost = bn_dropout_cg.outputs[0] cost.name = 'cost' train_monitoring = DataStreamMonitoring( [cost], train_monitor_stream, prefix="train", before_first_epoch=False, after_epoch=False, after_training=True, updates=extra_updates) cost, accuracy = cg.outputs cost.name = 'cost' accuracy.name = 'accuracy' monitored_quantities = [cost, accuracy] valid_monitoring = DataStreamMonitoring( monitored_quantities, valid_monitor_stream, prefix="valid", before_first_epoch=False, after_epoch=False, every_n_epochs=5) # Prepare checkpoint checkpoint = Checkpoint( 'celeba_classifier.zip', every_n_epochs=5, use_cpickle=True) extensions = [Timing(), FinishAfter(after_n_epochs=50), train_monitoring, valid_monitoring, checkpoint, Printing(), ProgressBar()] main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions) main_loop.run()
Example #16
Source File: train_celeba_vae.py From discgen with MIT License | 4 votes |
def run(discriminative_regularization=True): streams = create_celeba_streams(training_batch_size=100, monitoring_batch_size=500, include_targets=False) main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3] # Compute parameter updates for the batch normalization population # statistics. They are updated following an exponential moving average. rval = create_training_computation_graphs(discriminative_regularization) cg, bn_cg, variance_parameters = rval pop_updates = list( set(get_batch_normalization_updates(bn_cg, allow_duplicates=True))) decay_rate = 0.05 extra_updates = [(p, m * decay_rate + p * (1 - decay_rate)) for p, m in pop_updates] model = Model(bn_cg.outputs[0]) selector = Selector( find_bricks( model.top_bricks, lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp', 'decoder_convnet', 'decoder_mlp'))) parameters = list(selector.get_parameters().values()) + variance_parameters # Prepare algorithm step_rule = Adam() algorithm = GradientDescent(cost=bn_cg.outputs[0], parameters=parameters, step_rule=step_rule) algorithm.add_updates(extra_updates) # Prepare monitoring monitored_quantities_list = [] for graph in [bn_cg, cg]: cost, kl_term, reconstruction_term = graph.outputs cost.name = 'nll_upper_bound' avg_kl_term = kl_term.mean(axis=0) avg_kl_term.name = 'avg_kl_term' avg_reconstruction_term = -reconstruction_term.mean(axis=0) avg_reconstruction_term.name = 'avg_reconstruction_term' monitored_quantities_list.append( [cost, avg_kl_term, avg_reconstruction_term]) train_monitoring = DataStreamMonitoring( monitored_quantities_list[0], train_monitor_stream, prefix="train", updates=extra_updates, after_epoch=False, before_first_epoch=False, every_n_epochs=5) valid_monitoring = DataStreamMonitoring( monitored_quantities_list[1], valid_monitor_stream, prefix="valid", after_epoch=False, before_first_epoch=False, every_n_epochs=5) # Prepare checkpoint save_path = 'celeba_vae_{}regularization.zip'.format( '' if discriminative_regularization else 'no_') checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True) extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring, valid_monitoring, checkpoint, Printing(), ProgressBar()] main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions) main_loop.run()
Example #17
Source File: pacgan_task.py From PacGAN with MIT License | 4 votes |
def create_main_loop(self): model, bn_model, bn_updates = self.create_models() gan, = bn_model.top_bricks discriminator_loss, generator_loss = bn_model.outputs step_rule = Adam(learning_rate=self._config["learning_rate"], beta1=self._config["beta1"]) algorithm = ali_algorithm(discriminator_loss, gan.discriminator_parameters, step_rule, generator_loss, gan.generator_parameters, step_rule) algorithm.add_updates(bn_updates) streams = create_packing_gaussian_mixture_data_streams( num_packings=self._config["num_packing"], batch_size=self._config["batch_size"], monitoring_batch_size=self._config["monitoring_batch_size"], means=self._config["x_mode_means"], variances=self._config["x_mode_variances"], priors=self._config["x_mode_priors"], num_examples=self._config["num_sample"]) main_loop_stream, train_monitor_stream, valid_monitor_stream = streams bn_monitored_variables = ( [v for v in bn_model.auxiliary_variables if 'norm' not in v.name] + bn_model.outputs) monitored_variables = ( [v for v in model.auxiliary_variables if 'norm' not in v.name] + model.outputs) extensions = [ Timing(), FinishAfter(after_n_epochs=self._config["num_epoch"]), DataStreamMonitoring( bn_monitored_variables, train_monitor_stream, prefix="train", updates=bn_updates), DataStreamMonitoring( monitored_variables, valid_monitor_stream, prefix="valid"), Checkpoint(os.path.join(self._work_dir, self._config["main_loop_file"]), after_epoch=True, after_training=True, use_cpickle=True), ProgressBar(), Printing(), ] if self._config["log_models"]: extensions.append(ModelLogger(folder=self._work_dir, after_epoch=True)) if self._config["log_figures"]: extensions.append(GraphLogger(num_modes=self._config["num_zmode"], num_samples=self._config["num_log_figure_sample"], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"], folder=self._work_dir, after_epoch=True, after_training=True)) if self._config["log_metrics"]: extensions.append(MetricLogger(means=self._config["x_mode_means"], variances=self._config["x_mode_variances"], folder=self._work_dir, after_epoch=True)) main_loop = MainLoop(model=bn_model, data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions) return main_loop
Example #18
Source File: pacgan_task.py From PacGAN with MIT License | 4 votes |
def create_main_loop(self): model, bn_model, bn_updates = self.create_models() gan, = bn_model.top_bricks discriminator_loss, generator_loss = bn_model.outputs step_rule = Adam(learning_rate=self._config["learning_rate"], beta1=self._config["beta1"]) algorithm = ali_algorithm(discriminator_loss, gan.discriminator_parameters, step_rule, generator_loss, gan.generator_parameters, step_rule) algorithm.add_updates(bn_updates) streams = create_packing_gaussian_mixture_data_streams( num_packings=self._config["num_packing"], batch_size=self._config["batch_size"], monitoring_batch_size=self._config["monitoring_batch_size"], means=self._config["x_mode_means"], variances=self._config["x_mode_variances"], priors=self._config["x_mode_priors"], num_examples=self._config["num_sample"]) main_loop_stream, train_monitor_stream, valid_monitor_stream = streams bn_monitored_variables = ( [v for v in bn_model.auxiliary_variables if 'norm' not in v.name] + bn_model.outputs) monitored_variables = ( [v for v in model.auxiliary_variables if 'norm' not in v.name] + model.outputs) extensions = [ Timing(), FinishAfter(after_n_epochs=self._config["num_epoch"]), DataStreamMonitoring( bn_monitored_variables, train_monitor_stream, prefix="train", updates=bn_updates), DataStreamMonitoring( monitored_variables, valid_monitor_stream, prefix="valid"), Checkpoint(os.path.join(self._work_dir, self._config["main_loop_file"]), after_epoch=True, after_training=True, use_cpickle=True), ProgressBar(), Printing(), ] if self._config["log_models"]: extensions.append(ModelLogger(folder=self._work_dir, after_epoch=True)) if self._config["log_figures"]: extensions.append(GraphLogger(num_modes=self._config["num_zmode"], num_samples=self._config["num_log_figure_sample"], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"], folder=self._work_dir, after_epoch=True, after_training=True)) if self._config["log_metrics"]: extensions.append(MetricLogger(means=self._config["x_mode_means"], variances=self._config["x_mode_variances"], folder=self._work_dir, after_epoch=True)) main_loop = MainLoop(model=bn_model, data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions) return main_loop