Python keras.models.Model.from_config() Examples
The following are 30
code examples of keras.models.Model.from_config().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.models.Model
, or try the search function
.
Example #1
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #2
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #3
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #4
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth(): x_val = np.random.random((10, 5)) x = Input(shape=(5,)) A = Dense(5, name='A') B = Dense(5, name='B') output = A(B(A(B(x)))) M = Model(x, output) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #5
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #6
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #7
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth(): x_val = np.random.random((10, 5)) x = Input(shape=(5,)) A = Dense(5, name='A') B = Dense(5, name='B') output = A(B(A(B(x)))) M = Model(x, output) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #8
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #9
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #10
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #11
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #12
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #13
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #14
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth(): x_val = np.random.random((10, 5)) x = Input(shape=(5,)) A = Dense(5, name='A') B = Dense(5, name='B') output = A(B(A(B(x)))) M = Model(x, output) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #15
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #16
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth(): x_val = np.random.random((10, 5)) x = Input(shape=(5,)) A = Dense(5, name='A') B = Dense(5, name='B') output = A(B(A(B(x)))) M = Model(x, output) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #17
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #18
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #19
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #20
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #21
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #22
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #23
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth(): x_val = np.random.random((10, 5)) x = Input(shape=(5,)) A = Dense(5, name='A') B = Dense(5, name='B') output = A(B(A(B(x)))) M = Model(x, output) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #24
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #25
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_call_arguments(): # Test the ability to pass and serialize arguments to `call`. inp = layers.Input(shape=(2,)) x = layers.Dense(3)(inp) x = layers.Dropout(0.5)(x, training=True) model = Model(inp, x) assert not model.uses_learning_phase # Test that argument is kept when applying the model inp2 = layers.Input(shape=(2,)) out2 = model(inp2) assert not out2._uses_learning_phase # Test that argument is kept after loading a model config = model.get_config() model = Model.from_config(config) assert not model.uses_learning_phase
Example #26
Source File: test_topology.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_layer_sharing_at_heterogeneous_depth_with_concat(): input_shape = (16, 9, 3) input_layer = Input(shape=input_shape) A = Dense(3, name='dense_A') B = Dense(3, name='dense_B') C = Dense(3, name='dense_C') x1 = B(A(input_layer)) x2 = A(C(input_layer)) output = layers.concatenate([x1, x2]) M = Model(inputs=input_layer, outputs=output) x_val = np.random.random((10, 16, 9, 3)) output_val = M.predict(x_val) config = M.get_config() weights = M.get_weights() M2 = Model.from_config(config) M2.set_weights(weights) output_val_2 = M2.predict(x_val) np.testing.assert_allclose(output_val, output_val_2, atol=1e-6)
Example #27
Source File: core_test.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_activity_regularization(): layer = layers.ActivityRegularization(l1=0.01, l2=0.01) # test in functional API x = layers.Input(shape=(3,)) z = layers.Dense(2)(x) y = layer(z) model = Model(x, y) model.compile('rmsprop', 'mse') model.predict(np.random.random((2, 3))) # test serialization model_config = model.get_config() model = Model.from_config(model_config) model.compile('rmsprop', 'mse')
Example #28
Source File: engine.py From recurrentshop with MIT License | 6 votes |
def from_config(cls, config, custom_objects={}): if type(custom_objects) is list: custom_objects = {obj.__name__: obj for obj in custom_objects} custom_objects.update(_get_cells()) config = config.copy() model_config = config.pop('model_config') if model_config is None: model = None else: model = Model.from_config(model_config, custom_objects) if type(model.input) is list: input = model.input[0] initial_states = model.input[1:] else: input = model.input initial_states = None if type(model.output) is list: output = model.output[0] final_states = model.output[1:] else: output = model.output final_states = None return cls(input, output, initial_states, final_states, **config)
Example #29
Source File: _base.py From faceswap with GNU General Public License v3.0 | 6 votes |
def reset_pingpong(self): """ Reset the models for pingpong training """ logger.debug("Resetting models") # Clear models and graph self.predictors = dict() K.clear_session() # Load Models for current training run for model in self.networks.values(): model.network = Model.from_config(model.config) model.network.set_weights(model.weights) inputs = self.get_inputs() self.build_autoencoders(inputs) self.compile_predictors(initialize=False) logger.debug("Reset models")
Example #30
Source File: model.py From keras-han-for-docla with MIT License | 5 votes |
def from_config(cls, config, custom_objects=None): """ Keras' API isn't really extendible at this point therefore we need to use a bit hacky solution to be able to correctly reconstruct the HAN model from a config. This therefore does not reconstruct a instance of HAN model, but actually a standard Keras model that behaves exactly the same. """ base_config = config.pop('base_config') return Model.from_config( base_config, custom_objects=custom_objects )