Python scipy.ndimage.median_filter() Examples
The following are 30
code examples of scipy.ndimage.median_filter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage
, or try the search function
.
Example #1
Source File: filtering.py From lidar with MIT License | 6 votes |
def MedianFilter(in_dem, kernel_size=3, out_file=None): print("Median filtering ...") start_time = time.time() dem = rd.LoadGDAL(in_dem) no_data = dem.no_data projection = dem.projection geotransform = dem.geotransform med = ndimage.median_filter(dem, size=kernel_size) med = np2rdarray(med, no_data, projection, geotransform) print("Run time: {:.4f} seconds".format(time.time() - start_time)) if out_file is not None: print("Saving dem ...") rd.SaveGDAL(out_file, med) return out_file return med # Gaussian filter
Example #2
Source File: qps_rings.py From qkit with GNU General Public License v2.0 | 6 votes |
def find_jumps2(self,ds,threshold=30000): self._prepare_find_jumps() ds = self._hf[ds] offset=ds[0] # first we remove a bit of noise #flt = gaussian_filter1d(ds,10) flt = median_filter(ds,size=10) #flt = ds # the sobel filter finds the "jumps" sb=sobel(flt) for i in sb: self.qps_jpn_hight.append(float(i)) for i in flt: self.qps_jpn_spec.append(float(i)) """ for i in xrange(flt.shape[0]-1): if(abs(sb[i])>threshold): offset -= sb[i] self.qps_jpn_spec.append(float(flt[i]-offset)) else: self.qps_jpn_spec.append(float(flt[i]-offset)) """ #for i in sb
Example #3
Source File: dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _background_removal_single_frame_median(frame, footprint=19): """Background removal using median filter. Parameters ---------- frame : NumPy 2D array footprint : float Returns ------- background_removed : Numpy 2D array Examples -------- >>> import pyxem.utils.dask_tools as dt >>> s = pxm.dummy_data.dummy_data.get_cbed_signal() >>> s_rem = dt._background_removal_single_frame_median(s.data[0, 0]) """ bg_subtracted = frame - ndi.median_filter(frame, size=footprint) return bg_subtracted
Example #4
Source File: profile.py From pylinac with MIT License | 6 votes |
def filter(self, size: NumberLike=0.05, kind: str='median'): """Filter the profile. Parameters ---------- size : float, int Size of the median filter to apply. If a float, the size is the ratio of the length. Must be in the range 0-1. E.g. if size=0.1 for a 1000-element array, the filter will be 100 elements. If an int, the filter is the size passed. kind : {'median', 'gaussian'} The kind of filter to apply. If gaussian, `size` is the sigma value. """ if isinstance(size, float): if 0 < size < 1: size = int(round(len(self.values)*size)) size = max(size, 1) else: raise TypeError("Float was passed but was not between 0 and 1") if kind == 'median': self.values = ndimage.median_filter(self.values, size=size) elif kind == 'gaussian': self.values = ndimage.gaussian_filter(self.values, sigma=size)
Example #5
Source File: image.py From pylinac with MIT License | 6 votes |
def filter(self, size: Union[float, int]=0.05, kind: str='median'): """Filter the profile. Parameters ---------- size : int, float Size of the median filter to apply. If a float, the size is the ratio of the length. Must be in the range 0-1. E.g. if size=0.1 for a 1000-element array, the filter will be 100 elements. If an int, the filter is the size passed. kind : {'median', 'gaussian'} The kind of filter to apply. If gaussian, *size* is the sigma value. """ if isinstance(size, float): if 0 < size < 1: size *= len(self.array) size = max(size, 1) else: raise TypeError("Float was passed but was not between 0 and 1") if kind == 'median': self.array = ndimage.median_filter(self.array, size=size) elif kind == 'gaussian': self.array = ndimage.gaussian_filter(self.array, sigma=size)
Example #6
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_rank12(self): expected = [[3, 3, 2, 4, 4], [3, 5, 2, 5, 1], [5, 5, 8, 3, 5]] footprint = [[1, 0, 1], [0, 1, 0]] for type_ in self.types: array = numpy.array([[3, 2, 5, 1, 4], [5, 8, 3, 7, 1], [5, 6, 9, 3, 5]], type_) output = ndimage.rank_filter(array, 1, footprint=footprint) assert_array_almost_equal(expected, output) output = ndimage.percentile_filter(array, 50.0, footprint=footprint) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, footprint=footprint) assert_array_almost_equal(expected, output)
Example #7
Source File: dataloader_spacetime.py From space_time_pde with MIT License | 6 votes |
def filter(self, signal): """Filter a given signal with a choice of filter type (self.lres_filter). """ signal = signal.copy() filter_size = [1, self.downsamp_t*2-1, self.downsamp_xz*2-1, self.downsamp_xz*2-1] if self.lres_filter == 'none' or (not self.lres_filter): output = signal elif self.lres_filter == 'gaussian': sigma = [0, int(self.downsamp_t/2), int(self.downsamp_xz/2), int(self.downsamp_xz/2)] output = ndimage.gaussian_filter(signal, sigma=sigma) elif self.lres_filter == 'uniform': output = ndimage.uniform_filter(signal, size=filter_size) elif self.lres_filter == 'median': output = ndimage.median_filter(signal, size=filter_size) elif self.lres_filter == 'maximum': output = ndimage.maximum_filter(signal, size=filter_size) else: raise NotImplementedError( "lres_filter must be one of none/gaussian/uniform/median/maximum") return output
Example #8
Source File: test_ndimage.py From Computable with MIT License | 6 votes |
def test_rank12(self): expected = [[3, 3, 2, 4, 4], [3, 5, 2, 5, 1], [5, 5, 8, 3, 5]] footprint = [[1, 0, 1], [0, 1, 0]] for type in self.types: array = numpy.array([[3, 2, 5, 1, 4], [5, 8, 3, 7, 1], [5, 6, 9, 3, 5]], type) output = ndimage.rank_filter(array, 1, footprint=footprint) assert_array_almost_equal(expected, output) output = ndimage.percentile_filter(array, 50.0, footprint=footprint) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, footprint=footprint) assert_array_almost_equal(expected, output)
Example #9
Source File: neuro_dataset.py From event-Python with MIT License | 6 votes |
def prepare_n_mnist(filename, is_filter, num_spikes, step_factor=1): """Creates images from the specified n mnist recording filename: path to the recording is_filter: True if median filtering should be applied to the constructed image num_spikes: number of unique spikes per image step_factor: proportional amount to shift before generating the next image 1 would result in no overlapping events between images 0.6 would result in the next image overlapping with 40% of the previous image returns: list of images, where each image is a 2d numpy array (height, width) """ td = ev.read_dataset(filename) #td.show_td(100) td.data = stabilize(td) td.data = td.extract_roi([3, 3], [28, 28], True) images = make_td_images(td, num_spikes, step_factor) if is_filter: images = ndimage.median_filter(images, 3) #for image in images: # cv2.imshow('img', image) # cv2.waitKey(70) return images
Example #10
Source File: neuro_dataset.py From event-Python with MIT License | 6 votes |
def prepare_n_mnist_continuous(filename, is_filter, is_normalize=False): """Creates image with pixel values indicating probability of a spike filename: path to the recording is_filter: True if median filtering should be applied to the constructed image is_normalize: If True, the probabilities will be normalized to make the image more obvious returns: image (2d numpy array (height, width)) """ td = ev.read_dataset(filename) #td.show_td(100) td.data = stabilize(td) td.data = td.extract_roi([0, 0], [28, 28], True) #td.data = apply_tracking1(td) #td.data = apply_tracking2(td) #td.data = apply_tracking3(td) #td.data = td.extract_roi([3, 3], [28, 28], True) image = make_td_probability_image(td, 9, is_normalize) if is_filter: image = ndimage.median_filter(image, 3) #cv2.imshow('img', image) #cv2.waitKey(1) return image
Example #11
Source File: helper.py From sketchKeras with Apache License 2.0 | 5 votes |
def show_active_img_and_save_denoise_filter2(name,img,path): mat = img.astype(np.float) mat[mat<0.1] = 0 mat = - mat + 1 mat = mat * 255.0 mat[mat < 0] = 0 mat[mat > 255] = 255 mat=mat.astype(np.uint8) mat = ndimage.median_filter(mat, 1) cv2.imshow(name,mat) cv2.imwrite(path,mat) return
Example #12
Source File: helper.py From sketchKeras with Apache License 2.0 | 5 votes |
def show_active_img_and_save_denoise_filter(name,img,path): mat = img.astype(np.float) mat[mat<0.18] = 0 mat = - mat + 1 mat = mat * 255.0 mat[mat < 0] = 0 mat[mat > 255] = 255 mat=mat.astype(np.uint8) mat = ndimage.median_filter(mat, 1) cv2.imshow(name,mat) cv2.imwrite(path,mat) return
Example #13
Source File: helper.py From sketchKeras with Apache License 2.0 | 5 votes |
def show_active_img_and_save_denoise(name,img,path): mat = img.astype(np.float) mat = - mat + 1 mat = mat * 255.0 mat[mat < 0] = 0 mat[mat > 255] = 255 mat=mat.astype(np.uint8) mat = ndimage.median_filter(mat, 1) cv2.imshow(name,mat) cv2.imwrite(path,mat) return
Example #14
Source File: helper.py From sketchKeras with Apache License 2.0 | 5 votes |
def denoise_mat(img,i): return ndimage.median_filter(img, i)
Example #15
Source File: line_seperate.py From chamanti_ocr with Apache License 2.0 | 5 votes |
def filter_noise(self, ): self.imgarr = nd.median_filter(self.imgarr, size=3)
Example #16
Source File: grad_cam.py From DeepDanbooru with MIT License | 5 votes |
def filter_grads(grads): return ndimage.median_filter(grads, 10)
Example #17
Source File: sketch_keras_util.py From Tag2Pix with MIT License | 5 votes |
def to_keras_enhanced(img): mat = img.astype(np.float) mat[mat<0.1] = 0 mat = - mat + 1 mat = mat * 255.0 mat[mat < 0] = 0 mat[mat > 255] = 255 mat=mat.astype(np.uint8) mat = ndimage.median_filter(mat, 1) return mat
Example #18
Source File: train.py From fast-neural-style-keras with Apache License 2.0 | 5 votes |
def display_img(i,x,style,is_val=False): # save current generated image img = x #deprocess_image(x) if is_val: #img = ndimage.median_filter(img, 3) fname = 'images/output/%s_%d_val.png' % (style,i) else: fname = 'images/output/%s_%d.png' % (style,i) imsave(fname, img) print('Image saved as', fname)
Example #19
Source File: qps_rings.py From qkit with GNU General Public License v2.0 | 5 votes |
def split_traces(self,ds,threshold=30000): self._prepare_find_jumps() ds = self._hf[ds] # first we remove a bit of noise, size is the number of averages #flt = gaussian_filter1d(ds,10) flt = median_filter(ds,size=3) #flt = ds # the sobel filter finds the "jumps" sb=sobel(flt) for i in sb: self.qps_jpn_hight.append(float(i)) #for i in flt: self.qps_jpn_spec.append(float(i)) offset=ds[0] tr_num = 0 tr_name = "qps_tr_"+str(tr_num) tr_obj = self._hf.add_value_vector(tr_name, folder = 'analysis', x = self._x_co, unit = 'Hz') keepout = 4 for i,tr in enumerate(flt): keepout += 1 if abs(sb[i])>threshold and keepout>3: keepout = 0 # new trace tr_num +=1 tr_name = "qps_tr_"+str(tr_num) tr_obj = self._hf.add_value_vector(tr_name, folder = 'analysis', x = self._x_co, unit = 'Hz') print tr , i #tr_obj.append(float(tr)) else: if keepout>2: tr_obj.append(float(tr-offset))
Example #20
Source File: defenses.py From jpeg-defense with MIT License | 5 votes |
def median_filter(img_arr, size=3): return _median_filter(img_arr, size=size)
Example #21
Source File: filters.py From muDIC with MIT License | 5 votes |
def homomorphic_median(image, sigma=10): log_img = np.log(image) return np.exp(log_img - median_filter(log_img, int(sigma)))
Example #22
Source File: test_filters.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_median_filter(self): d = np.random.randn(500, 500) os = np.empty([4] + list(d.shape)) ot = np.empty_like(os) self.check_func_serial(4, sndi.median_filter, (d, 3), os) self.check_func_thread(4, sndi.median_filter, (d, 3), ot) assert_array_equal(os, ot)
Example #23
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_rank08(self): array = numpy.array([[3, 2, 5, 1, 4], [5, 8, 3, 7, 1], [5, 6, 9, 3, 5]]) expected = [[3, 3, 2, 4, 4], [5, 5, 5, 4, 4], [5, 6, 7, 5, 5]] output = ndimage.percentile_filter(array, 50.0, size=(2, 3)) assert_array_almost_equal(expected, output) output = ndimage.rank_filter(array, 3, size=(2, 3)) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, size=(2, 3)) assert_array_almost_equal(expected, output)
Example #24
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_rank04(self): array = numpy.array([3, 2, 5, 1, 4]) expected = [3, 3, 2, 4, 4] output = ndimage.rank_filter(array, 1, size=3) assert_array_almost_equal(expected, output) output = ndimage.percentile_filter(array, 50, size=3) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, size=3) assert_array_almost_equal(expected, output)
Example #25
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_rank02(self): array = numpy.array([1, 2, 3, 4, 5]) output = ndimage.rank_filter(array, 1, size=[3]) assert_array_almost_equal(array, output) output = ndimage.percentile_filter(array, 50, size=3) assert_array_almost_equal(array, output) output = ndimage.median_filter(array, (3,)) assert_array_almost_equal(array, output)
Example #26
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_rank01(self): array = numpy.array([1, 2, 3, 4, 5]) output = ndimage.rank_filter(array, 1, size=2) assert_array_almost_equal(array, output) output = ndimage.percentile_filter(array, 100, size=2) assert_array_almost_equal(array, output) output = ndimage.median_filter(array, 2) assert_array_almost_equal(array, output)
Example #27
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_rank08(self): array = numpy.array([[3, 2, 5, 1, 4], [5, 8, 3, 7, 1], [5, 6, 9, 3, 5]]) expected = [[3, 3, 2, 4, 4], [5, 5, 5, 4, 4], [5, 6, 7, 5, 5]] output = ndimage.percentile_filter(array, 50.0, size=(2, 3)) assert_array_almost_equal(expected, output) output = ndimage.rank_filter(array, 3, size=(2, 3)) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, size=(2, 3)) assert_array_almost_equal(expected, output)
Example #28
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_rank04(self): array = numpy.array([3, 2, 5, 1, 4]) expected = [3, 3, 2, 4, 4] output = ndimage.rank_filter(array, 1, size=3) assert_array_almost_equal(expected, output) output = ndimage.percentile_filter(array, 50, size=3) assert_array_almost_equal(expected, output) output = ndimage.median_filter(array, size=3) assert_array_almost_equal(expected, output)
Example #29
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_rank02(self): array = numpy.array([1, 2, 3, 4, 5]) output = ndimage.rank_filter(array, 1, size=[3]) assert_array_almost_equal(array, output) output = ndimage.percentile_filter(array, 50, size=3) assert_array_almost_equal(array, output) output = ndimage.median_filter(array, (3,)) assert_array_almost_equal(array, output)
Example #30
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_rank01(self): array = numpy.array([1, 2, 3, 4, 5]) output = ndimage.rank_filter(array, 1, size=2) assert_array_almost_equal(array, output) output = ndimage.percentile_filter(array, 100, size=2) assert_array_almost_equal(array, output) output = ndimage.median_filter(array, 2) assert_array_almost_equal(array, output)