Python scipy.ndimage.mean() Examples
The following are 23
code examples of scipy.ndimage.mean().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage
, or try the search function
.
Example #1
Source File: try_catdata.py From vnpy_crypto with MIT License | 6 votes |
def labelmeanfilter_nd(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 # adjusted for 2d x with column variables labelsunique = np.arange(np.max(y)+1) labmeansdata = [] labmeans = [] for xx in x.T: labelmeans = np.array(ndimage.mean(xx, labels=y, index=labelsunique)) labmeansdata.append(labelmeans[y]) labmeans.append(labelmeans) # group count: labelcount = np.array(ndimage.histogram(y, labelsunique[0], labelsunique[-1]+1, 1, labels=y, index=labelsunique)) # returns array of lable/group counts and of label/group means # and label/group means for each original observation return labelcount, np.array(labmeans), np.array(labmeansdata).T
Example #2
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def labelmeanfilter_nd(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 # adjusted for 2d x with column variables labelsunique = np.arange(np.max(y)+1) labmeansdata = [] labmeans = [] for xx in x.T: labelmeans = np.array(ndimage.mean(xx, labels=y, index=labelsunique)) labmeansdata.append(labelmeans[y]) labmeans.append(labelmeans) # group count: labelcount = np.array(ndimage.histogram(y, labelsunique[0], labelsunique[-1]+1, 1, labels=y, index=labelsunique)) # returns array of lable/group counts and of label/group means # and label/group means for each original observation return labelcount, np.array(labmeans), np.array(labmeansdata).T
Example #3
Source File: test_measurements.py From Computable with MIT License | 6 votes |
def test_stat_funcs_2d(): """Apply the stat funcs to a 2-d array.""" a = np.array([[5,6,0,0,0], [8,9,0,0,0], [0,0,0,3,5]]) lbl = np.array([[1,1,0,0,0], [1,1,0,0,0], [0,0,0,2,2]]) mean = ndimage.mean(a, labels=lbl, index=[1, 2]) assert_array_equal(mean, [7.0, 4.0]) var = ndimage.variance(a, labels=lbl, index=[1, 2]) assert_array_equal(var, [2.5, 1.0]) std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2]) assert_array_almost_equal(std, np.sqrt([2.5, 1.0])) med = ndimage.median(a, labels=lbl, index=[1, 2]) assert_array_equal(med, [7.0, 4.0]) min = ndimage.minimum(a, labels=lbl, index=[1, 2]) assert_array_equal(min, [5, 3]) max = ndimage.maximum(a, labels=lbl, index=[1, 2]) assert_array_equal(max, [9, 5])
Example #4
Source File: scene_processing.py From kite with GNU General Public License v3.0 | 6 votes |
def apply(self): sc = self.scene org = self.original factor = self.factor sx, sy = sc.displacement.shape gx, gy = num.ogrid[0:sx, 0:sy] regions = sy/factor * (gx/factor) + gy/factor indices = num.arange(regions.max() + 1) def block_downsample(arr): res = ndimage.mean( arr, labels=regions, index=indices) res.shape = (sx/factor, sy/factor) return res sc.displacement = block_downsample(sc.displacement) sc.theta = block_downsample(sc.theta) sc.phi = block_downsample(sc.phi) sc.frame.dLat = org['frame.dLat'] * self.factor sc.frame.dLon = org['frame.dLat'] * self.factor
Example #5
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_stat_funcs_2d(): a = np.array([[5,6,0,0,0], [8,9,0,0,0], [0,0,0,3,5]]) lbl = np.array([[1,1,0,0,0], [1,1,0,0,0], [0,0,0,2,2]]) mean = ndimage.mean(a, labels=lbl, index=[1, 2]) assert_array_equal(mean, [7.0, 4.0]) var = ndimage.variance(a, labels=lbl, index=[1, 2]) assert_array_equal(var, [2.5, 1.0]) std = ndimage.standard_deviation(a, labels=lbl, index=[1, 2]) assert_array_almost_equal(std, np.sqrt([2.5, 1.0])) med = ndimage.median(a, labels=lbl, index=[1, 2]) assert_array_equal(med, [7.0, 4.0]) min = ndimage.minimum(a, labels=lbl, index=[1, 2]) assert_array_equal(min, [5, 3]) max = ndimage.maximum(a, labels=lbl, index=[1, 2]) assert_array_equal(max, [9, 5])
Example #6
Source File: suppixpool_orig.py From superpixPool with MIT License | 5 votes |
def forward_cpu(self, inputs): img, labels = inputs outputs = [] for batch in xrange(img.shape[0]): batchOut = [] for classIx in xrange(img.shape[1]): # outputs.append(ndimage.maximum(img[classIx, :,:,:], labels=labels, index= np.unique(labels))) batchOut.append(ndimage.mean(img[batch, classIx, :,:,:], labels=labels[batch,:,:,:], index=range(labels[batch,:,:,:].max()+1)).astype(img.dtype)) outputs.append(batchOut) return np.array(outputs),
Example #7
Source File: try_catdata.py From vnpy_crypto with MIT License | 5 votes |
def labelmeanfilter(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 labelsunique = np.arange(np.max(y)+1) labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) # returns label means for each original observation return labelmeans[y] #groupcount: i.e. number of observation by group/label #np.array(ndimage.histogram(yrvs[:,0],0,10,1,labels=yrvs[:,0],index=np.unique(yrvs[:,0])))
Example #8
Source File: supvoxpool.py From superpixPool with MIT License | 5 votes |
def forward_cpu(self, inputs): img, labels = inputs outputs = [] for batch in xrange(img.shape[0]): batchOut = [] for classIx in xrange(img.shape[1]): # outputs.append(ndimage.maximum(img[classIx, :,:,:], labels=labels, index= np.unique(labels))) batchOut.append(ndimage.mean(img[batch, classIx, :,:,:], labels=labels[batch,:,:,:], index=range(labels[batch,:,:,:].max()+1)).astype(img.dtype)) outputs.append(batchOut) return np.array(outputs),
Example #9
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def groupsstats_dummy(y, x, nonseq=0): if x.ndim == 1: # use groupsstats_1d x = x[:,np.newaxis] dummy = cat2dummy(y, nonseq=nonseq) countgr = dummy.sum(0, dtype=float) meangr = np.dot(x.T,dummy)/countgr meandata = np.dot(dummy,meangr.T) # category/group means as array in shape of x xdevmeangr = x - meandata # deviation from category/group mean vargr = np.dot((xdevmeangr * xdevmeangr).T, dummy) / countgr return meangr, vargr, xdevmeangr, countgr
Example #10
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def groupsstats_1d(y, x, labelsunique): '''use ndimage to get fast mean and variance''' labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) labelvars = np.array(ndimage.var(x, labels=y, index=labelsunique)) return labelmeans, labelvars
Example #11
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def labelmeanfilter_str(ys, x): # works also for string labels in ys, but requires 1D # from mailing list scipy-user 2009-02-11 unil, unilinv = np.unique(ys, return_index=False, return_inverse=True) labelmeans = np.array(ndimage.mean(x, labels=unilinv, index=np.arange(np.max(unil)+1))) arr3 = labelmeans[unilinv] return arr3
Example #12
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def labelmeanfilter(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 labelsunique = np.arange(np.max(y)+1) labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) # returns label means for each original observation return labelmeans[y] #groupcount: i.e. number of observation by group/label #np.array(ndimage.histogram(yrvs[:,0],0,10,1,labels=yrvs[:,0],index=np.unique(yrvs[:,0])))
Example #13
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_mean04(): labels = np.array([[1, 2], [2, 4]], np.int8) olderr = np.seterr(all='ignore') try: for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels, index=[4, 8, 2]) assert_array_almost_equal(output[[0,2]], [4.0, 2.5]) assert_(np.isnan(output[1])) finally: np.seterr(**olderr)
Example #14
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_mean03(): labels = np.array([1, 2]) for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels, index=2) assert_almost_equal(output, 3.0)
Example #15
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_mean02(): labels = np.array([1, 0], bool) input = np.array([[1, 2], [3, 4]], bool) output = ndimage.mean(input, labels=labels) assert_almost_equal(output, 1.0)
Example #16
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_mean01(): labels = np.array([1, 0], bool) for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels) assert_almost_equal(output, 2.0)
Example #17
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_mean04(): "mean 4" labels = np.array([[1, 2], [2, 4]], np.int8) olderr = np.seterr(all='ignore') try: for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels, index=[4, 8, 2]) assert_array_almost_equal(output[[0,2]], [4.0, 2.5]) assert_(np.isnan(output[1])) finally: np.seterr(**olderr)
Example #18
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_mean03(): "mean 3" labels = np.array([1, 2]) for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels, index=2) assert_almost_equal(output, 3.0)
Example #19
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_mean02(): "mean 2" labels = np.array([1, 0], bool) input = np.array([[1, 2], [3, 4]], bool) output = ndimage.mean(input, labels=labels) assert_almost_equal(output, 1.0)
Example #20
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_mean01(): "mean 1" labels = np.array([1, 0], bool) for type in types: input = np.array([[1, 2], [3, 4]], type) output = ndimage.mean(input, labels=labels) assert_almost_equal(output, 2.0)
Example #21
Source File: try_catdata.py From vnpy_crypto with MIT License | 5 votes |
def groupsstats_dummy(y, x, nonseq=0): if x.ndim == 1: # use groupsstats_1d x = x[:,np.newaxis] dummy = cat2dummy(y, nonseq=nonseq) countgr = dummy.sum(0, dtype=float) meangr = np.dot(x.T,dummy)/countgr meandata = np.dot(dummy,meangr.T) # category/group means as array in shape of x xdevmeangr = x - meandata # deviation from category/group mean vargr = np.dot((xdevmeangr * xdevmeangr).T, dummy) / countgr return meangr, vargr, xdevmeangr, countgr
Example #22
Source File: try_catdata.py From vnpy_crypto with MIT License | 5 votes |
def groupsstats_1d(y, x, labelsunique): '''use ndimage to get fast mean and variance''' labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) labelvars = np.array(ndimage.var(x, labels=y, index=labelsunique)) return labelmeans, labelvars
Example #23
Source File: try_catdata.py From vnpy_crypto with MIT License | 5 votes |
def labelmeanfilter_str(ys, x): # works also for string labels in ys, but requires 1D # from mailing list scipy-user 2009-02-11 unil, unilinv = np.unique(ys, return_index=False, return_inverse=True) labelmeans = np.array(ndimage.mean(x, labels=unilinv, index=np.arange(np.max(unil)+1))) arr3 = labelmeans[unilinv] return arr3