Python nets.nets_factory.get_network_fn() Examples
The following are 30
code examples of nets.nets_factory.get_network_fn().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.nets_factory
, or try the search function
.
Example #1
Source File: image_generation.py From TwinGAN with Apache License 2.0 | 6 votes |
def prepare_inception_score_classifier(classifier_name, num_classes, images, return_saver=True): network_fn = nets_factory.get_network_fn( classifier_name, num_classes=num_classes, weight_decay=0.0, is_training=False, ) # Note: you may need to change the prediction_fn here. try: logits, end_points = network_fn(images, prediction_fn=tf.sigmoid, create_aux_logits=False) except TypeError: tf.logging.warning('Cannot specify prediction_fn=tf.sigmoid, create_aux_logits=False.') logits, end_points = network_fn(images, ) variables_to_restore = slim.get_model_variables(scope=nets_factory.scopes_map[classifier_name]) predictions = end_points['Predictions'] if return_saver: saver = tf.train.Saver(variables_to_restore) return predictions, end_points, saver else: return predictions, end_points
Example #2
Source File: export_inference_graph.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #3
Source File: export_inference_graph.py From edafa with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) if FLAGS.quantize: tf.contrib.quantize.create_eval_graph() graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #4
Source File: nets_factory_test.py From MAX-Image-Segmenter with Apache License 2.0 | 6 votes |
def testGetNetworkFnFirstHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[:10]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes=num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) if net not in ['i3d', 's3dg']: inputs = tf.random_uniform( (batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #5
Source File: nets_factory_test.py From MAX-Image-Segmenter with Apache License 2.0 | 6 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes=num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) if net not in ['i3d', 's3dg']: inputs = tf.random_uniform( (batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #6
Source File: export_inference_graph.py From yolo_v2 with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #7
Source File: nets_factory_test.py From morph-net with Apache License 2.0 | 6 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes=num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) if net not in ['i3d', 's3dg']: inputs = tf.random_uniform( (batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #8
Source File: nets_factory_test.py From morph-net with Apache License 2.0 | 6 votes |
def testGetNetworkFnFirstHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[:10]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes=num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) if net not in ['i3d', 's3dg']: inputs = tf.random_uniform( (batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #9
Source File: export_inference_graph.py From CVTron with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #10
Source File: export_inference_graph.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #11
Source File: export_inference_graph.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #12
Source File: export_inference_graph.py From tumblr-emotions with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'validation', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) if hasattr(network_fn, 'default_image_size'): image_size = network_fn.default_image_size else: image_size = FLAGS.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[1, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #13
Source File: export_inference_graph.py From DOTA_models with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) if hasattr(network_fn, 'default_image_size'): image_size = network_fn.default_image_size else: image_size = FLAGS.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[1, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #14
Source File: style_swap_model.py From style_swap_tensorflow with Apache License 2.0 | 6 votes |
def _build_evaluate_model(self): self.input_image = tf.placeholder(tf.float32, shape=[None, None, 3]) self.style_image = tf.placeholder(tf.float32, shape=[None, None, 3]) preprocess_fn = preprocessing_factory.get_preprocessing(self.config.net_name, is_training=False) height = self.evaluate_height if self.evaluate_height else self.PREPROCESS_SIZE width = self.evaluate_width if self.evaluate_width else self.PREPROCESS_SIZE preprocessed_image = preprocess_fn(self.input_image, height, width, resize_side_min=min(height, width)) images = tf.expand_dims(preprocessed_image, axis=0) style_images = tf.expand_dims(preprocess_fn(self.style_image, self.PREPROCESS_SIZE, self.PREPROCESS_SIZE), axis=0) self.swaped_tensor = self._swap_net(images, style_images) # # network_fn = nets_factory.get_network_fn(self.config.net_name, num_classes=1, is_training=False) # _, endpoints_dict = network_fn(images, spatial_squeeze=False) # self.swaped_tensor = endpoints_dict[self.config.net_name + self.style_layer] self.generated = self._inverse_net(self.swaped_tensor) self.evaluate_op = tf.squeeze(self.generated, axis=0) self.init_op = self._get_network_init_fn() self.save_variables = [var for var in tf.trainable_variables() if var.name.startswith("inverse_net")]
Example #15
Source File: export_inference_graph.py From ctw-baseline with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #16
Source File: export_inference_graph.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #17
Source File: style_swap_model.py From style_swap_tensorflow with Apache License 2.0 | 6 votes |
def _train_inverse(self, generated, swaped_tensor): preprocess_fn = preprocessing_factory.get_preprocessing(self.config.net_name, is_training=False) network_fn = nets_factory.get_network_fn(self.config.net_name, num_classes=1, is_training=False) with tf.variable_scope("", reuse=True): preprocessed_image = tf.stack([preprocess_fn(img, self.PREPROCESS_SIZE, self.PREPROCESS_SIZE) for img in tf.unstack(generated, axis=0)]) _, inversed_endpoints_dict = network_fn(preprocessed_image, spatial_squeeze=False) layer_names = list(inversed_endpoints_dict.keys()) [layer_name] = [l_name for l_name in layer_names if self.style_layer in l_name] inversed_style_layer = inversed_endpoints_dict[layer_name] # print(inversed_style_layer.get_shape()) tf.losses.add_loss(tf.nn.l2_loss(swaped_tensor - inversed_style_layer)) self.loss_op = tf.losses.get_total_loss() train_vars = [var for var in tf.trainable_variables() if var.name.startswith("inverse_net")] slim.summarize_tensor(self.loss_op, "loss") slim.summarize_tensors(train_vars) # print(train_vars) self.save_variables = train_vars learning_rate = tf.train.exponential_decay(self.config.learning_rate, self.global_step, 1000, 0.66, name="learning_rate") self.train_op = tf.train.AdamOptimizer(learning_rate).minimize(self.loss_op, self.global_step, train_vars)
Example #18
Source File: export_inference_graph.py From Gun-Detector with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #19
Source File: nets_factory_test.py From Targeted-Adversarial-Attack with Apache License 2.0 | 5 votes |
def testGetNetworkFnArgScope(self): batch_size = 5 num_classes = 10 net = 'cifarnet' with self.test_session(use_gpu=True): net_fn = nets_factory.get_network_fn(net, num_classes) image_size = getattr(net_fn, 'default_image_size', 224) with slim.arg_scope([slim.model_variable, slim.variable], device='/CPU:0'): inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) net_fn(inputs) weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'CifarNet/conv1')[0] self.assertDeviceEqual('/CPU:0', weights.device)
Example #20
Source File: nets_factory_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testGetNetworkFnFirstHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[:10]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #21
Source File: nets_factory_test.py From Creative-Adversarial-Networks with MIT License | 5 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map.keys()[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #22
Source File: nets_factory_test.py From hops-tensorflow with Apache License 2.0 | 5 votes |
def testGetNetworkFn(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map: with self.test_session(): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #23
Source File: nets_factory_test.py From terngrad with Apache License 2.0 | 5 votes |
def testGetNetworkFn(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map: with self.test_session(): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #24
Source File: nets_factory_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #25
Source File: nets_factory_test.py From ICPR_TextDection with GNU General Public License v3.0 | 5 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #26
Source File: nets_factory_test.py From ICPR_TextDection with GNU General Public License v3.0 | 5 votes |
def testGetNetworkFnFirstHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[:10]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #27
Source File: nets_factory_test.py From 3D-convolutional-speaker-recognition with Apache License 2.0 | 5 votes |
def testGetNetworkFn(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map: with self.test_session(): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #28
Source File: nets_factory_test.py From 3D-convolutional-speaker-recognition with Apache License 2.0 | 5 votes |
def testGetNetworkFn(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map: with self.test_session(): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #29
Source File: nets_factory_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testGetNetworkFnSecondHalf(self): batch_size = 5 num_classes = 1000 for net in list(nets_factory.networks_map.keys())[10:]: with tf.Graph().as_default() as g, self.test_session(g): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
Example #30
Source File: nets_factory_test.py From 3D-convolutional-speaker-recognition with Apache License 2.0 | 5 votes |
def testGetNetworkFn(self): batch_size = 5 num_classes = 1000 for net in nets_factory.networks_map: with self.test_session(): net_fn = nets_factory.get_network_fn(net, num_classes) # Most networks use 224 as their default_image_size image_size = getattr(net_fn, 'default_image_size', 224) inputs = tf.random_uniform((batch_size, image_size, image_size, 3)) logits, end_points = net_fn(inputs) self.assertTrue(isinstance(logits, tf.Tensor)) self.assertTrue(isinstance(end_points, dict)) self.assertEqual(logits.get_shape().as_list()[0], batch_size) self.assertEqual(logits.get_shape().as_list()[-1], num_classes)