Python nltk.tokenize.TweetTokenizer() Examples
The following are 19
code examples of nltk.tokenize.TweetTokenizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nltk.tokenize
, or try the search function
.
Example #1
Source File: twitter.py From V1EngineeringInc-Docs with Creative Commons Attribution Share Alike 4.0 International | 6 votes |
def __init__( self, root, fileids=None, word_tokenizer=TweetTokenizer(), encoding='utf8' ): """ :param root: The root directory for this corpus. :param fileids: A list or regexp specifying the fileids in this corpus. :param word_tokenizer: Tokenizer for breaking the text of Tweets into smaller units, including but not limited to words. """ CorpusReader.__init__(self, root, fileids, encoding) for path in self.abspaths(self._fileids): if isinstance(path, ZipFilePathPointer): pass elif os.path.getsize(path) == 0: raise ValueError("File {} is empty".format(path)) """Check that all user-created corpus files are non-empty.""" self._word_tokenizer = word_tokenizer
Example #2
Source File: guesswhat_tokenizer.py From guesswhat with Apache License 2.0 | 6 votes |
def __init__(self, dictionary_file): with open(dictionary_file, 'r') as f: self.word2i = json.load(f)['word2i'] self.wpt = TweetTokenizer(preserve_case=False) if "<stop_dialogue>" not in self.word2i: self.word2i["<stop_dialogue>"] = len(self.word2i) self.i2word = {} for (k, v) in self.word2i.items(): self.i2word[v] = k # Retrieve key values self.no_words = len(self.word2i) self.start_token = self.word2i["<start>"] self.stop_token = self.word2i["?"] self.stop_dialogue = self.word2i["<stop_dialogue>"] self.padding_token = self.word2i["<padding>"] self.yes_token = self.word2i["<yes>"] self.no_token = self.word2i["<no>"] self.non_applicable_token = self.word2i["<n/a>"] self.answers = [self.yes_token, self.no_token, self.non_applicable_token]
Example #3
Source File: twitter.py From razzy-spinner with GNU General Public License v3.0 | 6 votes |
def __init__(self, root, fileids=None, word_tokenizer=TweetTokenizer(), encoding='utf8'): """ :param root: The root directory for this corpus. :param fileids: A list or regexp specifying the fileids in this corpus. :param word_tokenizer: Tokenizer for breaking the text of Tweets into smaller units, including but not limited to words. """ CorpusReader.__init__(self, root, fileids, encoding) for path in self.abspaths(self._fileids): if isinstance(path, ZipFilePathPointer): pass elif os.path.getsize(path) == 0: raise ValueError("File {} is empty".format(path)) """Check that all user-created corpus files are non-empty.""" self._word_tokenizer = word_tokenizer
Example #4
Source File: extract_baseline_features.py From Sarcasm-Detection with MIT License | 6 votes |
def get_ngram_features_from_map(tweets, ngram_map, n): regexp_tknzr = RegexpTokenizer(r'\w+') tweet_tknzr = TweetTokenizer() features = [] for tweet in tweets: feature_list = [0] * np.zeros(len(ngram_map)) tweet = tweet.lower() ngram_list = get_ngram_list(tweet_tknzr, tweet, 1) if n > 1: ngram_list += get_ngram_list(regexp_tknzr, tweet, 2) if n > 2: ngram_list += get_ngram_list(regexp_tknzr, tweet, 3) for gram in ngram_list: if gram in ngram_map: feature_list[ngram_map[gram]] += 1.0 features.append(feature_list) return features
Example #5
Source File: extract_baseline_features.py From Sarcasm-Detection with MIT License | 5 votes |
def get_ngrams(tweets, n): unigrams = Counter() bigrams = Counter() trigrams = Counter() regexp_tknzr = RegexpTokenizer(r'\w+') tweet_tknzr = TweetTokenizer() for tweet in tweets: tweet = tweet.lower() # Get the unigram list for this tweet and update the unigram counter unigram_list = get_ngram_list(tweet_tknzr, tweet, 1) unigrams.update(unigram_list) # Get the bigram list for this tweet and update the bigram counter if n > 1: bigram_list = get_ngram_list(regexp_tknzr, tweet, 2) bigrams.update(bigram_list) # Get the trigram list for this tweet and update the trigram counter if n > 2: trigram_list = get_ngram_list(regexp_tknzr, tweet, 3) trigrams.update(trigram_list) # Update the counters such that each n-gram appears at least min_occurence times min_occurence = 2 unigram_tokens = [k for k, c in unigrams.items() if c >= min_occurence] # In case using just unigrams, make the bigrams and trigrams empty bigram_tokens = trigram_tokens = [] if n > 1: bigram_tokens = [k for k, c in bigrams.items() if c >= min_occurence] if n > 2: trigram_tokens = [k for k, c in trigrams.items() if c >= min_occurence] return unigram_tokens, bigram_tokens, trigram_tokens
Example #6
Source File: model_vnc.py From Deep-Reinforcement-Learning-Hands-On with MIT License | 5 votes |
def __init__(self, max_dict_size=MM_MAX_DICT_SIZE, device="cpu"): self.max_dict_size = max_dict_size self.token_to_id = {TOKEN_UNK: 0} self.next_id = 1 self.tokenizer = TweetTokenizer(preserve_case=True) self.device = device
Example #7
Source File: utils.py From Deep-Reinforcement-Learning-Hands-On with MIT License | 5 votes |
def tokenize(s): return TweetTokenizer(preserve_case=False).tokenize(s)
Example #8
Source File: clean_raw.py From leaf with BSD 2-Clause "Simplified" License | 5 votes |
def main(): tknzr = TweetTokenizer() if not os.path.exists(FINAL_DIR): os.makedirs(FINAL_DIR) files = [f for f in os.listdir(DIR) if f.endswith('.pck')] files.sort() num_files = len(files) for i, f in enumerate(files): clean_file(f, tknzr) print('Done with {} of {}'.format(i, num_files))
Example #9
Source File: reddit_utils.py From leaf with BSD 2-Clause "Simplified" License | 5 votes |
def clean_body(self, tknzr=None): if tknzr is None: tknzr = TweetTokenizer() # unescape html symbols. new_body = html.unescape(self.body) # remove extraneous whitespace. new_body = new_body.replace('\n', ' ') new_body = new_body.replace('\t', ' ') new_body = re.sub(r'\s+', ' ', new_body).strip() # remove non-ascii symbols. new_body = new_body.encode('ascii', errors='ignore').decode() # replace URLS with a special token. new_body = re.sub(URL_REGEX, URL_TOKEN, new_body) # replace reddit user with a token new_body = re.sub(USER_REGEX, USER_TOKEN, new_body) # replace subreddit names with a token new_body = re.sub(SUBREDDIT_REGEX, SUBREDDIT_TOKEN, new_body) # lowercase the text new_body = new_body.casefold() # Could be done in addition: # get rid of comments with quotes # tokenize the text new_body = tknzr.tokenize(new_body) self.body = ' '.join(new_body)
Example #10
Source File: TrueCaser.py From truecase with Apache License 2.0 | 5 votes |
def __init__(self, dist_file_path=None): """ Initialize module with default data/english.dist file """ if dist_file_path is None: dist_file_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/english.dist") with open(dist_file_path, "rb") as distributions_file: pickle_dict = pickle.load(distributions_file) self.uni_dist = pickle_dict["uni_dist"] self.backward_bi_dist = pickle_dict["backward_bi_dist"] self.forward_bi_dist = pickle_dict["forward_bi_dist"] self.trigram_dist = pickle_dict["trigram_dist"] self.word_casing_lookup = pickle_dict["word_casing_lookup"] self.tknzr = TweetTokenizer()
Example #11
Source File: util.py From topic-ensemble with Apache License 2.0 | 5 votes |
def preprocess_tweets( docs, stopwords, min_df = 3, min_term_length = 2, ngram_range = (1,1), apply_tfidf = True, apply_norm = True): """ Preprocess a list containing text documents stored as strings, where the documents have already been tokenized and are separated by whitespace """ from nltk.tokenize import TweetTokenizer tweet_tokenizer = TweetTokenizer(preserve_case = False, strip_handles=True, reduce_len=True) def custom_tokenizer( s ): # need to manually replace quotes s = s.replace("'"," ").replace('"',' ') tokens = [] for x in tweet_tokenizer.tokenize(s): if len(x) >= min_term_length: if x[0] == "#" or x[0].isalpha(): tokens.append( x ) return tokens # Build the Vector Space Model, apply TF-IDF and normalize lines to unit length all in one call if apply_norm: norm_function = "l2" else: norm_function = None tfidf = TfidfVectorizer(stop_words=stopwords, lowercase=True, strip_accents="unicode", tokenizer=custom_tokenizer, use_idf=apply_tfidf, norm=norm_function, min_df = min_df, ngram_range = ngram_range) X = tfidf.fit_transform(docs) terms = [] # store the vocabulary map v = tfidf.vocabulary_ for i in range(len(v)): terms.append("") for term in v.keys(): terms[ v[term] ] = term return (X,terms) # --------------------------------------------------------------
Example #12
Source File: extract_baseline_features.py From Sarcasm-Detection with MIT License | 5 votes |
def get_features2(tweets, subj_dict): print("Getting features type 2...") features = [] tknzr = TweetTokenizer(preserve_case=True, reduce_len=False, strip_handles=False) lemmatizer = WordNetLemmatizer() for tweet in tweets: feature_list = [0.0] * 5 tokens = tknzr.tokenize(tweet) # Take the number of positive and negative words as features for word in tokens: stemmed = lemmatizer.lemmatize(word, 'v') stemmed = lemmatizer.lemmatize(stemmed) if stemmed in subj_dict: dictlist = [] for word in subj_dict[stemmed]: dictlist.extend(subj_dict[stemmed][word]) if 'strongsubj' in dictlist: value = 1.0 else: value = 0.5 if 'positive' in dictlist: feature_list[0] += value elif 'negative' in dictlist: feature_list[1] += value # Take the report of positives to negatives as a feature if feature_list[0] != 0.0 and feature_list[1] != 0.0: feature_list[2] = feature_list[0] / feature_list[1] # Derive features from punctuation feature_list[2] += count_apparitions(tokens, helper.punctuation) # Take strong negations as a feature feature_list[3] += count_apparitions(tokens, helper.strong_negations) # Take strong affirmatives as a feature feature_list[4] += count_apparitions(tokens, helper.strong_affirmatives) features.append(feature_list) print("Done.") return features
Example #13
Source File: fetch_realtime_grounding.py From converse_reading_cmr with MIT License | 5 votes |
def __init__(self, max_fact_len=12, max_facts_count=500, min_fact_len=8): self.tokenizer = TweetTokenizer(preserve_case=False) self.extractor = pke.unsupervised.TopicRank() self.max_fact_len = max_fact_len self.max_facts_count = max_facts_count self.min_fact_len = min_fact_len
Example #14
Source File: tokenizers.py From converse_reading_cmr with MIT License | 5 votes |
def clean_str(txt): #print("in=[%s]" % txt) txt = txt.lower() txt = re.sub('^',' ', txt) txt = re.sub('$',' ', txt) # url and tag words = [] for word in txt.split(): i = word.find('http') if i >= 0: word = word[:i] + ' ' + '__url__' words.append(word.strip()) txt = ' '.join(words) # remove markdown URL txt = re.sub(r'\[([^\]]*)\] \( *__url__ *\)', r'\1', txt) # remove illegal char txt = re.sub('__url__','URL',txt) txt = re.sub(r"[^A-Za-z0-9():,.!?\"\']", " ", txt) txt = re.sub('URL','__url__',txt) # contraction add_space = ["'s", "'m", "'re", "n't", "'ll","'ve","'d","'em"] tokenizer = TweetTokenizer(preserve_case=False) txt = ' ' + ' '.join(tokenizer.tokenize(txt)) + ' ' txt = txt.replace(" won't ", " will n't ") txt = txt.replace(" can't ", " can n't ") for a in add_space: txt = txt.replace(a+' ', ' '+a+' ') txt = re.sub(r'^\s+', '', txt) txt = re.sub(r'\s+$', '', txt) txt = re.sub(r'\s+', ' ', txt) # remove extra spaces #print("out=[%s]" % txt) return txt
Example #15
Source File: parse_utils.py From deep-mlsa with Apache License 2.0 | 5 votes |
def __init__(self): self.tokenizers = { 'en': TweetTokenizer(), 'de': WordPunctTokenizer(), 'it': WordPunctTokenizer(), 'fr': WordPunctTokenizer(), 'default': WordPunctTokenizer() } self.tokenizer = TweetTokenizer()
Example #16
Source File: vqa_tokenizer.py From Conditional-Batch-Norm with MIT License | 5 votes |
def __init__(self, dictionary_file): self.tokenizer = TweetTokenizer(preserve_case=False) with open(dictionary_file, 'r') as f: data = json.load(f) self.word2i = data['word2i'] self.answer2i = data['answer2i'] self.preprocess_answers = data['preprocess_answers'] self.dictionary_file = dictionary_file self.i2word = {} for (k, v) in self.word2i.items(): self.i2word[v] = k self.i2answer = {} for (k, v) in self.answer2i.items(): self.i2answer[v] = k # Retrieve key values self.no_words = len(self.word2i) self.no_answers = len(self.answer2i) self.unknown_question_token = self.word2i["<unk>"] self.padding_token = self.word2i["<unk>"] self.unknown_answer = self.answer2i["<unk>"]
Example #17
Source File: tokenizers.py From DialoGPT with MIT License | 5 votes |
def clean_str(txt): #print("in=[%s]" % txt) txt = txt.lower() txt = re.sub('^',' ', txt) txt = re.sub('$',' ', txt) # url and tag words = [] for word in txt.split(): i = word.find('http') if i >= 0: word = word[:i] + ' ' + '__url__' words.append(word.strip()) txt = ' '.join(words) # remove markdown URL txt = re.sub(r'\[([^\]]*)\] \( *__url__ *\)', r'\1', txt) # remove illegal char txt = re.sub('__url__','URL',txt) txt = re.sub(r"[^A-Za-z0-9():,.!?\"\']", " ", txt) txt = re.sub('URL','__url__',txt) # contraction add_space = ["'s", "'m", "'re", "n't", "'ll","'ve","'d","'em"] tokenizer = TweetTokenizer(preserve_case=False) txt = ' ' + ' '.join(tokenizer.tokenize(txt)) + ' ' txt = txt.replace(" won't ", " will n't ") txt = txt.replace(" can't ", " can n't ") for a in add_space: txt = txt.replace(a+' ', ' '+a+' ') txt = re.sub(r'^\s+', '', txt) txt = re.sub(r'\s+$', '', txt) txt = re.sub(r'\s+', ' ', txt) # remove extra spaces #print("out=[%s]" % txt) return txt
Example #18
Source File: reddit.py From DialoGPT with MIT License | 5 votes |
def gpt_norm_sentence(txt): # url and tag words = [] for word in txt.split(): if word[0] == '#': # don't allow tag continue i = word.lower().find('http') if i >= 0: word = word[:i] + ' ' + '__url__' words.append(word.strip()) txt = ' '.join(words) # remove illegal char txt = txt.replace(chr(92),'') # chr(92) = '\'. as twitter has 'b\/c' rather than 'b/c' txt = txt.replace("b/c","because").replace('j/k','just kidding').replace('w/o','without').replace('w/','with') txt = re.sub('__mention__','MENTION',txt) txt = re.sub('__url__','URL',txt) txt = re.sub(r"[^A-Za-z0-9()\[\]:,.!?'“” ]", " ", txt) txt = re.sub('MENTION','__mention__',txt) txt = re.sub('URL','__url__',txt) tokenizer = TweetTokenizer(preserve_case=True) txt = ' ' + ' '.join(tokenizer.tokenize(txt)) + ' ' # remove un-necessary space return ' '.join(txt.split())
Example #19
Source File: extract_baseline_features.py From Sarcasm-Detection with MIT License | 4 votes |
def get_features1(tweets, subj_dict): print("Getting features type 1...") features = [] tknzr = TweetTokenizer(preserve_case=False, reduce_len=True, strip_handles=True) lemmatizer = WordNetLemmatizer() # Take positive and negative noun/verb phrases as features for tweet in tweets: feature_list = [0.0] * 6 tokens = tknzr.tokenize(tweet) pos = pos_tag(tokens) pos = [p for p in pos if 'VB' in p[1] or 'NN' in p[1]] for p in pos: stemmed = lemmatizer.lemmatize(p[0], 'v') stemmed = lemmatizer.lemmatize(stemmed) if 'VB' in p[1] and stemmed in subj_dict: if 'verb' in subj_dict[stemmed]: if 'positive' in subj_dict[stemmed]['verb']: feature_list[0] += 1.0 if 'negative' in subj_dict[stemmed]['verb']: feature_list[1] += 1.0 elif 'anypos' in subj_dict[stemmed]: if 'positive' in subj_dict[stemmed]['anypos']: feature_list[0] += 1.0 if 'negative' in subj_dict[stemmed]['anypos']: feature_list[1] += 1.0 if 'NN' in p[1] and stemmed in subj_dict: if 'noun' in subj_dict[stemmed]: if 'positive' in subj_dict[stemmed]['noun']: feature_list[2] += 1.0 if 'negative' in subj_dict[stemmed]['noun']: feature_list[3] += 1.0 elif 'anypos' in subj_dict[stemmed]: if 'positive' in subj_dict[stemmed]['anypos']: feature_list[2] += 1.0 if 'negative' in subj_dict[stemmed]['anypos']: feature_list[3] += 1.0 # Derive features from punctuation feature_list[4] += count_apparitions(tokens, helper.punctuation) # Take the number of strong negations as a feature feature_list[5] += count_apparitions(tokens, helper.strong_negations) features.append(feature_list) print("Done.") return features