Python keras.initializers.serialize() Examples
The following are 30
code examples of keras.initializers.serialize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializers
, or try the search function
.
Example #1
Source File: dense.py From Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition with GNU General Public License v3.0 | 6 votes |
def get_config(self): if self.kernel_initializer == 'quaternion': ki = self.kernel_init else: ki = initializers.serialize(self.kernel_initializer) config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'init_criterion': self.init_criterion, 'kernel_initializer': ki, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'seed': self.seed, } base_config = super(QuaternionDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #2
Source File: bn.py From deep_complex_networks with MIT License | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': sanitizedInitSer(self.beta_initializer), 'gamma_diag_initializer': sanitizedInitSer(self.gamma_diag_initializer), 'gamma_off_initializer': sanitizedInitSer(self.gamma_off_initializer), 'moving_mean_initializer': sanitizedInitSer(self.moving_mean_initializer), 'moving_variance_initializer': sanitizedInitSer(self.moving_variance_initializer), 'moving_covariance_initializer': sanitizedInitSer(self.moving_covariance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_diag_regularizer': regularizers.serialize(self.gamma_diag_regularizer), 'gamma_off_regularizer': regularizers.serialize(self.gamma_off_regularizer), 'beta_constraint': constraints .serialize(self.beta_constraint), 'gamma_diag_constraint': constraints .serialize(self.gamma_diag_constraint), 'gamma_off_constraint': constraints .serialize(self.gamma_off_constraint), } base_config = super(ComplexBatchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #3
Source File: abn.py From ddan with MIT License | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(BatchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #4
Source File: layers.py From indic_tagger with Apache License 2.0 | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #5
Source File: capslayers.py From deepcaps with MIT License | 6 votes |
def get_config(self): config = { 'ch_j': self.ch_j, 'n_j': self.n_j, 'kernel_size': self.kernel_size, 'strides': self.strides, 'b_alphas': self.b_alphas, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint) } base_config = super(Conv2DCaps, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #6
Source File: group_norm.py From keras-global-context-networks with MIT License | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #7
Source File: nascell.py From neural-architecture-search with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'projection_units': self.projection_units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'projection_activation': activations.serialize(self.projection_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'projection_initializer': initializers.serialize(self.projection_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'projection_regularizer': regularizers.serialize(self.projection_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'projection_constraint': constraints.serialize(self.projection_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NASCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #8
Source File: dense.py From deep_complex_networks with MIT License | 6 votes |
def get_config(self): if self.kernel_initializer in {'complex'}: ki = self.kernel_initializer else: ki = initializers.serialize(self.kernel_initializer) config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'init_criterion': self.init_criterion, 'kernel_initializer': ki, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'seed': self.seed, } base_config = super(ComplexDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #9
Source File: sn.py From Coloring-greyscale-images with MIT License | 6 votes |
def get_config(self): config = { 'rank': self.rank, 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(_Conv, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #10
Source File: nalu.py From keras-neural-alu with MIT License | 6 votes |
def get_config(self): config = { 'units': self.units, 'use_gating': self.use_gating, 'kernel_W_initializer': initializers.serialize(self.kernel_W_initializer), 'kernel_M_initializer': initializers.serialize(self.kernel_M_initializer), 'gate_initializer': initializers.serialize(self.gate_initializer), 'kernel_W_regularizer': regularizers.serialize(self.kernel_W_regularizer), 'kernel_M_regularizer': regularizers.serialize(self.kernel_M_regularizer), 'gate_regularizer': regularizers.serialize(self.gate_regularizer), 'kernel_W_constraint': constraints.serialize(self.kernel_W_constraint), 'kernel_M_constraint': constraints.serialize(self.kernel_M_constraint), 'gate_constraint': constraints.serialize(self.gate_constraint), 'epsilon': self.epsilon } base_config = super(NALU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #11
Source File: utils.py From face_landmark_dnn with MIT License | 6 votes |
def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.pop('filters') config.pop('kernel_initializer') config.pop('kernel_regularizer') config.pop('kernel_constraint') config['depth_multiplier'] = self.depth_multiplier config['depthwise_initializer'] = initializers.serialize( self.depthwise_initializer) config['depthwise_regularizer'] = regularizers.serialize( self.depthwise_regularizer) config['depthwise_constraint'] = constraints.serialize( self.depthwise_constraint) return config # Tracker
Example #12
Source File: layers.py From anago with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #13
Source File: norm.py From deep_complex_networks with MIT License | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_diag_initializer': initializers.serialize(self.gamma_diag_initializer), 'gamma_off_initializer': initializers.serialize(self.gamma_off_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_diag_regularizer': regularizers.serialize(self.gamma_diag_regularizer), 'gamma_off_regularizer': regularizers.serialize(self.gamma_off_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_diag_constraint': constraints.serialize(self.gamma_diag_constraint), 'gamma_off_constraint': constraints.serialize(self.gamma_off_constraint), } base_config = super(ComplexLayerNorm, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #14
Source File: normalizations.py From se_relativisticgan with MIT License | 6 votes |
def get_config(self): config = {'epsilon': self.epsilon, 'axis': self.axis, 'center': self.center, 'scale': self.scale, 'momentum': self.momentum, 'gamma_regularizer': initializers.serialize(self.gamma_regularizer), 'beta_regularizer': initializers.serialize(self.beta_regularizer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'r_max_value': self.r_max_value, 'd_max_value': self.d_max_value, 't_delta': self.t_delta} base_config = super(BatchRenormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #15
Source File: normalizations.py From se_relativisticgan with MIT License | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #16
Source File: group_norm.py From Keras-Group-Normalization with MIT License | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #17
Source File: layers.py From sequence-tagging-ner with Apache License 2.0 | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #18
Source File: gcnn.py From nn_playground with MIT License | 6 votes |
def get_config(self): config = {'output_dim': self.output_dim, 'window_size': self.window_size, 'init': self.init.get_config(), 'stride': self.strides[0], 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activy_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias, 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(GCNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #19
Source File: qrnn.py From nn_playground with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'window_size': self.window_size, 'stride': self.strides[0], 'return_sequences': self.return_sequences, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'use_bias': self.use_bias, 'dropout': self.dropout, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(QRNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #20
Source File: normalization.py From faceswap with GNU General Public License v3.0 | 6 votes |
def get_config(self): config = { "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": initializers.serialize(self.beta_initializer), "gamma_initializer": initializers.serialize(self.gamma_initializer), "beta_regularizer": regularizers.serialize(self.beta_regularizer), "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), "beta_constraint": constraints.serialize(self.beta_constraint), "gamma_constraint": constraints.serialize(self.gamma_constraint) } base_config = super(InstanceNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items())) # Update normalization into Keras custom objects
Example #21
Source File: switchnorm.py From keras-switchnorm with MIT License | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'momentum': self.momentum, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'mean_weights_initializer': initializers.serialize(self.mean_weights_initializer), 'variance_weights_initializer': initializers.serialize(self.variance_weights_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'mean_weights_regularizer': regularizers.serialize(self.mean_weights_regularizer), 'variance_weights_regularizer': regularizers.serialize(self.variance_weights_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'mean_weights_constraints': constraints.serialize(self.mean_weights_constraints), 'variance_weights_constraints': constraints.serialize(self.variance_weights_constraints), } base_config = super(SwitchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #22
Source File: ind_rnn.py From Keras-IndRNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'recurrent_clip_min': self.recurrent_clip_min, 'recurrent_clip_max': self.recurrent_clip_max, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(IndRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #23
Source File: ind_rnn.py From Keras-IndRNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'recurrent_clip_min': self.recurrent_clip_min, 'recurrent_clip_max': self.recurrent_clip_max, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(IndRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
Example #24
Source File: nested_lstm.py From Nested-LSTM with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'depth': self.depth, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'cell_activation': activations.serialize(self.cell_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NestedLSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #25
Source File: nested_lstm.py From Nested-LSTM with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'depth': self.depth, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'cell_activation': activations.serialize(self.cell_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NestedLSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
Example #26
Source File: qrnn.py From embedding-as-service with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'window_size': self.window_size, 'stride': self.strides[0], 'return_sequences': self.return_sequences, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'use_bias': self.use_bias, 'dropout': self.dropout, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(QRNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #27
Source File: batch_renorm.py From BatchRenormalization with MIT License | 6 votes |
def get_config(self): config = { 'epsilon': self.epsilon, 'axis': self.axis, 'center': self.center, 'scale': self.scale, 'momentum': self.momentum, 'gamma_regularizer': initializers.serialize(self.gamma_regularizer), 'beta_regularizer': initializers.serialize(self.beta_regularizer), 'moving_mean_initializer': initializers.serialize( self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize( self.moving_variance_initializer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'r_max_value': self.r_max_value, 'd_max_value': self.d_max_value, 't_delta': self.t_delta } base_config = super(BatchRenormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #28
Source File: cells.py From recurrentshop with MIT License | 6 votes |
def get_config(self): config = { 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(ExtendedRNNCell, self).get_config() config.update(base_config) return config
Example #29
Source File: groupnormalization.py From keras-contrib with MIT License | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #30
Source File: cosineconvolution2d.py From keras-contrib with MIT License | 6 votes |
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation': activations.serialize(self.activation), 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias} base_config = super(CosineConvolution2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))