Python keras.initializers.RandomNormal() Examples
The following are 30
code examples of keras.initializers.RandomNormal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializers
, or try the search function
.
Example #1
Source File: sn.py From Coloring-greyscale-images with MIT License | 6 votes |
def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[-1] self.kernel = self.add_weight(shape=(input_dim, self.units), initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.units,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim}) self.built = True
Example #2
Source File: networks.py From voxelmorph with GNU General Public License v3.0 | 6 votes |
def atl_img_model(vol_shape, mult=1.0, src=None, atl_layer_name='img_params'): """ atlas model with flow representation idea: starting with some (probably rough) atlas (like a ball or average shape), the output atlas is this input ball plus a """ # get a new layer (std) if src is None: src = Input(shape=[*vol_shape, 1], name='input_atlas') # get the velocity field v_layer = LocalParamWithInput(shape=[*vol_shape, 1], mult=mult, name=atl_layer_name, my_initializer=RandomNormal(mean=0.0, stddev=1e-7)) v = v_layer(src) # this is so memory-wasteful... return keras.models.Model(src, v)
Example #3
Source File: model.py From df with Mozilla Public License 2.0 | 5 votes |
def upscale_ps(filters, use_norm=True): def block(x): x = Conv2D(filters*4, kernel_size=3, use_bias=False, kernel_initializer=RandomNormal(0, 0.02), padding='same' )(x) x = LeakyReLU(0.1)(x) x = PixelShuffler()(x) return x return block
Example #4
Source File: emb_nn_image.py From Kaggle-Avito-NN with MIT License | 5 votes |
def gauss_init(): return RandomNormal(mean=0.0, stddev=0.005)
Example #5
Source File: layer.py From 3D-CNNs-for-Liver-Classification with Apache License 2.0 | 5 votes |
def __init__(self, filters, init_normal_stddev=0.01, **kwargs): """Init""" self.filters = filters super(ConvOffset3D, self).__init__(self.filters * 3, (3, 3, 3), padding='same', use_bias=False, # kernel_initializer='zeros', kernel_initializer=RandomNormal(0, init_normal_stddev), **kwargs)
Example #6
Source File: networks.py From Remote-Sensing-Image-Classification with MIT License | 5 votes |
def wcrn(band, ncla1): input1 = Input(shape=(5,5,band)) # define network conv0x = Conv2D(64,kernel_size=(1,1),padding='valid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) conv0 = Conv2D(64,kernel_size=(3,3),padding='valid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) bn11 = BatchNormalization(axis=-1,momentum=0.9,epsilon=0.001,center=True,scale=True, beta_initializer='zeros',gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones') conv11 = Conv2D(128,kernel_size=(1,1),padding='same', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) conv12 = Conv2D(128,kernel_size=(1,1),padding='same', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) # fc1 = Dense(ncla1,activation='softmax',name='output1', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) # x1 x1 = conv0(input1) x1x = conv0x(input1) x1 = MaxPooling2D(pool_size=(3,3))(x1) x1x = MaxPooling2D(pool_size=(5,5))(x1x) x1 = concatenate([x1,x1x],axis=-1) x11 = bn11(x1) x11 = Activation('relu')(x11) x11 = conv11(x11) x11 = Activation('relu')(x11) x11 = conv12(x11) x1 = Add()([x1,x11]) x1 = Flatten()(x1) pre1 = fc1(x1) model1 = Model(inputs=input1, outputs=pre1) return model1
Example #7
Source File: networks.py From Remote-Sensing-Image-Classification with MIT License | 5 votes |
def wcrn3D(band, ncla1): input1 = Input(shape=(5,5,band)) # define network conv0x = Conv2D(64,kernel_size=(1,1,7),padding='valid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) conv0 = Conv2D(64,kernel_size=(3,3,1),padding='valid', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) bn11 = BatchNormalization(axis=-1,momentum=0.9,epsilon=0.001,center=True,scale=True, beta_initializer='zeros',gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones') conv11 = Conv2D(128,kernel_size=(1,1),padding='same', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) conv12 = Conv2D(128,kernel_size=(1,1),padding='same', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) fc1 = Dense(ncla1,activation='softmax',name='output1', kernel_initializer=RandomNormal(mean=0.0, stddev=0.01)) # x1 x1 = conv0(input1) x1x = conv0x(input1) x1 = MaxPooling2D(pool_size=(3,3))(x1) x1x = MaxPooling2D(pool_size=(5,5))(x1x) x1 = concatenate([x1,x1x],axis=-1) x11 = bn11(x1) x11 = Activation('relu')(x11) x11 = conv11(x11) x11 = Activation('relu')(x11) x11 = conv12(x11) x1 = Add()([x1,x11]) x1 = Flatten()(x1) pre1 = fc1(x1) model1 = Model(inputs=input1, outputs=pre1) return model1
Example #8
Source File: villain.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, *args, **kwargs): logger.debug("Initializing %s: (args: %s, kwargs: %s", self.__class__.__name__, args, kwargs) self.configfile = kwargs.get("configfile", None) kwargs["input_shape"] = (128, 128, 3) kwargs["encoder_dim"] = 512 if self.config["lowmem"] else 1024 self.kernel_initializer = RandomNormal(0, 0.02) super().__init__(*args, **kwargs) logger.debug("Initialized %s", self.__class__.__name__)
Example #9
Source File: realface.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, *args, **kwargs): logger.debug("Initializing %s: (args: %s, kwargs: %s", self.__class__.__name__, args, kwargs) self.configfile = kwargs.get("configfile", None) self.check_input_output() self.dense_width, self.upscalers_no = self.get_dense_width_upscalers_numbers() kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3) self.kernel_initializer = RandomNormal(0, 0.02) super().__init__(*args, **kwargs) logger.debug("Initialized %s", self.__class__.__name__)
Example #10
Source File: dfaker.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, *args, **kwargs): logger.debug("Initializing %s: (args: %s, kwargs: %s", self.__class__.__name__, args, kwargs) kwargs["input_shape"] = (64, 64, 3) kwargs["encoder_dim"] = 1024 self.kernel_initializer = RandomNormal(0, 0.02) super().__init__(*args, **kwargs) logger.debug("Initialized %s", self.__class__.__name__)
Example #11
Source File: unbalanced.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, *args, **kwargs): logger.debug("Initializing %s: (args: %s, kwargs: %s", self.__class__.__name__, args, kwargs) self.configfile = kwargs.get("configfile", None) self.lowmem = self.config.get("lowmem", False) kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3) kwargs["encoder_dim"] = 512 if self.lowmem else self.config["nodes"] self.kernel_initializer = RandomNormal(0, 0.02) super().__init__(*args, **kwargs) logger.debug("Initialized %s", self.__class__.__name__)
Example #12
Source File: layers.py From deform-conv with MIT License | 5 votes |
def __init__(self, filters, init_normal_stddev=0.01, **kwargs): """Init""" self.filters = filters super(ConvOffset2D, self).__init__( self.filters * 2, (3, 3), padding='same', use_bias=False, # TODO gradients are near zero if init is zeros kernel_initializer='zeros', # kernel_initializer=RandomNormal(0, init_normal_stddev), **kwargs )
Example #13
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #14
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #15
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #16
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #17
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #18
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) #Spectral Normalization if self.spectral_normalization: self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #19
Source File: model.py From df with Mozilla Public License 2.0 | 5 votes |
def __conv_init(a): print("conv_init", a) k = RandomNormal(0, 0.02)(a) # for convolution kernel k.conv_weight = True return k
Example #20
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #21
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #22
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #23
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None # Set input spec. self.input_spec = InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #24
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def build(self, input_shape): if len(input_shape) != 4: raise ValueError('Inputs should have rank ' + str(4) + '; Received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_weight(shape=kernel_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]), initializer=initializers.RandomNormal(0, 1), name='sn', trainable=False) # Set input spec. self.input_spec = InputSpec(ndim=4, axes={channel_axis: input_dim}) self.built = True
Example #25
Source File: networks.py From voxelmorph with GNU General Public License v3.0 | 5 votes |
def cvpr2018_net(vol_size, enc_nf, dec_nf, full_size=True, indexing='ij'): """ unet architecture for voxelmorph models presented in the CVPR 2018 paper. You may need to modify this code (e.g., number of layers) to suit your project needs. :param vol_size: volume size. e.g. (256, 256, 256) :param enc_nf: list of encoder filters. right now it needs to be 1x4. e.g. [16,32,32,32] :param dec_nf: list of decoder filters. right now it must be 1x6 (like voxelmorph-1) or 1x7 (voxelmorph-2) :return: the keras model """ ndims = len(vol_size) assert ndims in [1, 2, 3], "ndims should be one of 1, 2, or 3. found: %d" % ndims # get the core model unet_model = unet_core(vol_size, enc_nf, dec_nf, full_size=full_size) [src, tgt] = unet_model.inputs x = unet_model.output # transform the results into a flow field. Conv = getattr(KL, 'Conv%dD' % ndims) flow = Conv(ndims, kernel_size=3, padding='same', name='flow', kernel_initializer=RandomNormal(mean=0.0, stddev=1e-5))(x) # warp the source with the flow y = nrn_layers.SpatialTransformer(interp_method='linear', indexing=indexing)([src, flow]) # prepare model model = Model(inputs=[src, tgt], outputs=[y, flow]) return model
Example #26
Source File: networks.py From voxelmorph with GNU General Public License v3.0 | 5 votes |
def __init__(self, shape, my_initializer='RandomNormal', mult=1.0, **kwargs): self.shape=shape self.initializer = my_initializer self.biasmult = mult super(LocalParamWithInput, self).__init__(**kwargs)
Example #27
Source File: keras_models.py From ME-Net with MIT License | 5 votes |
def build(self, input_shape): # Create a trainable weight variable for this layer. self.i_embedding = self.add_weight( shape=(self.input_dim_i, self.rank), initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)), name='i_embedding', regularizer=self.embeddings_regularizer ) self.j_embedding = self.add_weight( shape=(self.input_dim_j, self.rank), initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)), name='j_embedding', regularizer=self.embeddings_regularizer ) if self.use_bias: self.i_bias = self.add_weight( shape=(self.input_dim_i, 1), initializer='zeros', name='i_bias' ) self.j_bias = self.add_weight( shape=(self.input_dim_j, 1), initializer='zeros', name='j_bias' ) self.constant = self.add_weight( shape=(1, 1), initializer='zeros', name='constant', ) self.built = True super(KerasMatrixFactorizer, self).build(input_shape)
Example #28
Source File: keras_models.py From fancyimpute with Apache License 2.0 | 5 votes |
def build(self, input_shape): # Create a trainable weight variable for this layer. self.i_embedding = self.add_weight( shape=(self.input_dim_i, self.rank), initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)), name='i_embedding', regularizer=self.embeddings_regularizer ) self.j_embedding = self.add_weight( shape=(self.input_dim_j, self.rank), initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)), name='j_embedding', regularizer=self.embeddings_regularizer ) if self.use_bias: self.i_bias = self.add_weight( shape=(self.input_dim_i, 1), initializer='zeros', name='i_bias' ) self.j_bias = self.add_weight( shape=(self.input_dim_j, 1), initializer='zeros', name='j_bias' ) self.constant = self.add_weight( shape=(1, 1), initializer='zeros', name='constant', ) self.built = True super(KerasMatrixFactorizer, self).build(input_shape)
Example #29
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normal(tensor_shape): _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape, target_mean=0., target_std=1)
Example #30
Source File: models_WGAN.py From DeepLearningImplementations with MIT License | 4 votes |
def discriminator(img_dim, bn_mode, model_name="discriminator"): """DCGAN discriminator Args: img_dim: dimension of the image output bn_mode: keras batchnorm mode model_name: model name (default: {"generator_deconv"}) Returns: keras model """ if K.image_dim_ordering() == "th": bn_axis = 1 min_s = min(img_dim[1:]) else: bn_axis = -1 min_s = min(img_dim[:-1]) disc_input = Input(shape=img_dim, name="discriminator_input") # Get the list of number of conv filters # (first layer starts with 64), filters are subsequently doubled nb_conv = int(np.floor(np.log(min_s // 4) / np.log(2))) list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv)] # First conv with 2x2 strides x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(disc_input) x = BatchNormalization(axis=bn_axis)(x) x = LeakyReLU(0.2)(x) # Conv blocks: Conv2D(2x2 strides)->BN->LReLU for i, f in enumerate(list_f[1:]): name = "disc_conv2d_%s" % (i + 2) x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) x = BatchNormalization(axis=bn_axis)(x) x = LeakyReLU(0.2)(x) # Last convolution x = Conv2D(1, (3, 3), name="last_conv", padding="same", use_bias=False, kernel_initializer=RandomNormal(stddev=0.02))(x) # Average pooling x = GlobalAveragePooling2D()(x) discriminator_model = Model(inputs=[disc_input], outputs=[x], name=model_name) visualize_model(discriminator_model) return discriminator_model