Python keras.initializers.Constant() Examples
The following are 30
code examples of keras.initializers.Constant().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializers
, or try the search function
.
Example #1
Source File: hadamard.py From landmark-recognition-challenge with GNU General Public License v3.0 | 6 votes |
def build(self, input_shape): hadamard_size = 2 ** int(math.ceil(math.log(max(input_shape[1], self.output_dim), 2))) self.hadamard = K.constant( value=hadamard(hadamard_size, dtype=np.int8)[:input_shape[1], :self.output_dim]) init_scale = 1. / math.sqrt(self.output_dim) self.scale = self.add_weight(name='scale', shape=(1,), initializer=Constant(init_scale), trainable=True) if self.use_bias: self.bias = self.add_weight(name='bias', shape=(self.output_dim,), initializer=RandomUniform(-init_scale, init_scale), trainable=True) super(HadamardClassifier, self).build(input_shape)
Example #2
Source File: recurrent_highway_networks.py From recurrentshop with MIT License | 6 votes |
def RHN(input_dim, hidden_dim, depth): # Wrapped model inp = Input(batch_shape=(batch_size, input_dim)) state = Input(batch_shape=(batch_size, hidden_dim)) drop_mask = Input(batch_shape=(batch_size, hidden_dim)) # To avoid all zero mask causing gradient to vanish inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask) drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask) dropped_state = multiply([state, inverted_drop_mask]) y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth, kernel_initializer=weight_init, kernel_regularizer=l2(weight_decay), kernel_constraint=max_norm(gradient_clip), bias_initializer=Constant(transform_bias), recurrent_initializer=weight_init, recurrent_regularizer=l2(weight_decay), recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state]) return RecurrentModel(input=inp, output=y, initial_states=[state, drop_mask], final_states=[new_state, drop_mask_2]) # lr decay Scheduler
Example #3
Source File: query_reduction_network.py From recurrentshop with MIT License | 6 votes |
def QRNcell(): xq = Input(batch_shape=(batch_size, embedding_dim * 2)) # Split into context and query xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim}, output_shape=lambda s: (s[0], s[1] / 2))(xq) qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim}, output_shape=lambda s: (s[0], s[1] / 2))(xq) h_tm1 = Input(batch_shape=(batch_size, embedding_dim)) zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt])) zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt) ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1)) rt = Dense(1, activation='sigmoid')(multiply([xt, qt])) rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt) ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])]) return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True) # # Load data #
Example #4
Source File: __init__.py From deep_complex_networks with MIT License | 6 votes |
def get_shallow_convnet(window_size=4096, channels=2, output_size=84): inputs = Input(shape=(window_size, channels)) conv = ComplexConv1D( 32, 512, strides=16, activation='relu')(inputs) pool = AveragePooling1D(pool_size=4, strides=2)(conv) pool = Permute([2, 1])(pool) flattened = Flatten()(pool) dense = ComplexDense(2048, activation='relu')(flattened) predictions = ComplexDense( output_size, activation='sigmoid', bias_initializer=Constant(value=-5))(dense) predictions = GetReal(predictions) model = Model(inputs=inputs, outputs=predictions) model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy']) return model
Example #5
Source File: motion_CNN3DmoreLayers.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init=0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #6
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #7
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #8
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #9
Source File: layers.py From Keras-GAN-Animeface-Character with MIT License | 5 votes |
def bilinear2x(x, nfilters): ''' Ugh, I don't like making layers. My credit goes to: https://kivantium.net/keras-bilinear ''' return Conv2DTranspose(nfilters, (4, 4), strides=(2, 2), padding='same', kernel_initializer=Constant(bilinear_upsample_weights(2, nfilters)))(x)
Example #10
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #11
Source File: highway_layer.py From bidaf-keras with GNU General Public License v3.0 | 5 votes |
def build(self, input_shape): # Create a trainable weight variable for this layer. dim = input_shape[-1] transform_gate_bias_initializer = Constant(self.transform_gate_bias) input_shape_dense_1 = input_shape[-1] self.dense_1 = Dense(units=dim, bias_initializer=transform_gate_bias_initializer) self.dense_1.build(input_shape) self.dense_2 = Dense(units=dim) self.dense_2.build(input_shape) self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights super(Highway, self).build(input_shape) # Be sure to call this at the end
Example #12
Source File: keras_regression_deep_broken.py From Deep-Learning-Quick-Reference with MIT License | 5 votes |
def build_network(input_features=None): const_initializer = Constant(value=0) # first we specify an input layer, with a shape == features inputs = Input(shape=(input_features,), name="input") x = Dense(32, activation='relu', name="hidden1", kernel_initializer=const_initializer, bias_initializer='ones')(inputs) x = Dense(32, activation='relu', name="hidden2", kernel_initializer=const_initializer, bias_initializer='ones')(x) x = Dense(32, activation='relu', name="hidden3", kernel_initializer=const_initializer, bias_initializer='ones')(x) x = Dense(32, activation='relu', name="hidden4", kernel_initializer=const_initializer, bias_initializer='ones')(x) x = Dense(16, activation='relu', name="hidden5", kernel_initializer=const_initializer, bias_initializer='ones')(x) # for regression we will use a single neuron with linear (no) activation prediction = Dense(1, activation='linear', name="final", kernel_initializer=const_initializer, bias_initializer='ones')(x) model = Model(inputs=inputs, outputs=prediction) model.compile(optimizer='adam', loss='mean_absolute_error') return model
Example #13
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #14
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_constant(tensor_shape): _runner(initializers.Constant(2), tensor_shape, target_mean=2, target_max=2, target_min=2)
Example #15
Source File: motion_VNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init=0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #16
Source File: VNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init = 0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #17
Source File: 3D_CNN.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init = 0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #18
Source File: VNetArt.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init = 0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #19
Source File: CNN3D.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init = 0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #20
Source File: CNN3DmoreLayers.py From CNNArt with Apache License 2.0 | 5 votes |
def fGetActivation(input_t, iPReLU=0): init = 0.25 if iPReLU == 1: # one alpha for each channel output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4])(input_t) elif iPReLU == 2: # just one alpha for each layer output_t = PReLU(alpha_initializer=Constant(value=init), shared_axes=[2, 3, 4, 1])(input_t) else: output_t = Activation('relu')(input_t) return output_t
Example #21
Source File: building_blocks.py From Tacotron-2-keras with MIT License | 5 votes |
def get_highway_output(highway_input, nb_layers, activation="tanh", bias=-3): dim = K.int_shape(highway_input)[-1] # dimension must be the same initial_bias = k_init.Constant(bias) for n in range(nb_layers): H = Dense(units=dim, bias_initializer=initial_bias)(highway_input) H = Activation("sigmoid")(H) carry_gate = Lambda(lambda x: 1.0 - x, output_shape=(dim,))(H) transform_gate = Dense(units=dim)(highway_input) transform_gate = Activation(activation)(transform_gate) transformed = Multiply()([H, transform_gate]) carried = Multiply()([carry_gate, highway_input]) highway_output = Add()([transformed, carried]) return highway_output
Example #22
Source File: transformer.py From keras-transformer with MIT License | 5 votes |
def build(self, input_shape): assert len(input_shape) == 3 _, sequence_length, d_model = input_shape self.halting_kernel = self.add_weight( name='halting_kernel', shape=(d_model, 1), initializer='glorot_uniform', trainable=True) self.halting_biases = self.add_weight( name='halting_biases', shape=(1,), initializer=initializers.Constant(0.1), trainable=True) self.time_penalty_t = K.constant(self.time_penalty, dtype=K.floatx()) return super().build(input_shape)
Example #23
Source File: graph_yoon_kim.py From Keras-TextClassification with MIT License | 5 votes |
def build(self, input_shape): # Create a trainable weight variable for this layer. dim = input_shape[-1] self.dense_1 = Dense(units=dim, bias_initializer=Constant(self.transform_gate_bias)) self.dense_1.build(input_shape) self.dense_2 = Dense(units=dim) self.dense_2.build(input_shape) self.trainable_weights = self.dense_1.trainable_weights + self.dense_2.trainable_weights super(Highway, self).build(input_shape) # Be sure to call this at the end
Example #24
Source File: graph_yoon_kim.py From Keras-TextClassification with MIT License | 5 votes |
def highway_keras(x): # writter by my own # paper; Highway Network(http://arxiv.org/abs/1505.00387). # 公式 # 1. s = sigmoid(Wx + b) # 2. z = s * relu(Wx + b) + (1 - s) * x # x shape : [N * time_depth, sum(filters)] # Table 1. CIFAR-10 test set accuracy of convolutional highway networks with # rectified linear activation and sigmoid gates. # For comparison, results reported by Romero et al. (2014) # using maxout networks are also shown. # Fitnets were trained using a two step training procedure using soft targets from the trained Teacher network, # which was trained using backpropagation. We trained all highway networks directly using backpropagation. # * indicates networks which were trained only on a set of 40K out of 50K examples in the training set. # Figure 2. Visualization of certain internals of the blocks in the best 50 hidden layer highway networks trained on MNIST # (top row) and CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality of the representation to 50. Each of # the 49 highway layers (y-axis) consists of 50 blocks (x-axis). # The first column shows the transform gate biases, which were initialized to -2 and -4 respectively. # In the second column the mean output of the transform gate over 10,000 training examples is depicted. # The third and forth columns show the output of the transform gates and # the block outputs for a single random training sample. gate_transform = Dense(units=K.int_shape(x)[1], activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer=keras.initializers.Constant(value=-2))(x) gate_cross = 1 - gate_transform block_state = Dense(units=K.int_shape(x)[1], activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zero')(x) high_way = gate_transform * block_state + gate_cross * x return high_way
Example #25
Source File: rbflayer.py From rbf_keras with MIT License | 5 votes |
def build(self, input_shape): self.centers = self.add_weight(name='centers', shape=(self.output_dim, input_shape[1]), initializer=self.initializer, trainable=True) self.betas = self.add_weight(name='betas', shape=(self.output_dim,), initializer=Constant( value=self.init_betas), # initializer='ones', trainable=True) super(RBFLayer, self).build(input_shape)
Example #26
Source File: keras_utils.py From Benchmarks with MIT License | 4 votes |
def build_initializer(type, kerasDefaults, seed=None, constant=0.): """ Set the initializer to the appropriate Keras initializer function based on the input string and learning rate. Other required values are set to the Keras default values Parameters ---------- type : string String to choose the initializer Options recognized: 'constant', 'uniform', 'normal', 'glorot_uniform', 'lecun_uniform', 'he_normal' See the Keras documentation for a full description of the options kerasDefaults : list List of default parameter values to ensure consistency between frameworks seed : integer Random number seed constant : float Constant value (for the constant initializer only) Return ---------- The appropriate Keras initializer function """ if type == 'constant': return initializers.Constant(value=constant) elif type == 'uniform': return initializers.RandomUniform(minval=kerasDefaults['minval_uniform'], maxval=kerasDefaults['maxval_uniform'], seed=seed) elif type == 'normal': return initializers.RandomNormal(mean=kerasDefaults['mean_normal'], stddev=kerasDefaults['stddev_normal'], seed=seed) # Not generally available # elif type == 'glorot_normal': # return initializers.glorot_normal(seed=seed) elif type == 'glorot_uniform': return initializers.glorot_uniform(seed=seed) elif type == 'lecun_uniform': return initializers.lecun_uniform(seed=seed) elif type == 'he_normal': return initializers.he_normal(seed=seed)
Example #27
Source File: test_callbacks.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_TerminateOnNaN(): np.random.seed(1337) (X_train, y_train), (X_test, y_test) = get_test_data(num_train=train_samples, num_test=test_samples, input_shape=(input_dim,), classification=True, num_classes=num_classes) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [callbacks.TerminateOnNaN()] model = Sequential() initializer = initializers.Constant(value=1e5) for _ in range(5): model.add(Dense(num_hidden, input_dim=input_dim, activation='relu', kernel_initializer=initializer)) model.add(Dense(num_classes, activation='linear')) model.compile(loss='mean_squared_error', optimizer='rmsprop') # case 1 fit history = model.fit(X_train, y_train, batch_size=batch_size, validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf # case 2 fit_generator def data_generator(): max_batch_index = len(X_train) // batch_size i = 0 while 1: yield (X_train[i * batch_size: (i + 1) * batch_size], y_train[i * batch_size: (i + 1) * batch_size]) i += 1 i = i % max_batch_index history = model.fit_generator(data_generator(), len(X_train), validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf or np.isnan(loss[0])
Example #28
Source File: test_callbacks.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_TerminateOnNaN(): np.random.seed(1337) (X_train, y_train), (X_test, y_test) = get_test_data(num_train=train_samples, num_test=test_samples, input_shape=(input_dim,), classification=True, num_classes=num_classes) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [callbacks.TerminateOnNaN()] model = Sequential() initializer = initializers.Constant(value=1e5) for _ in range(5): model.add(Dense(num_hidden, input_dim=input_dim, activation='relu', kernel_initializer=initializer)) model.add(Dense(num_classes, activation='linear')) model.compile(loss='mean_squared_error', optimizer='rmsprop') # case 1 fit history = model.fit(X_train, y_train, batch_size=batch_size, validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf # case 2 fit_generator def data_generator(): max_batch_index = len(X_train) // batch_size i = 0 while 1: yield (X_train[i * batch_size: (i + 1) * batch_size], y_train[i * batch_size: (i + 1) * batch_size]) i += 1 i = i % max_batch_index history = model.fit_generator(data_generator(), len(X_train), validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf or np.isnan(loss[0])
Example #29
Source File: test_callbacks.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_TerminateOnNaN(): np.random.seed(1337) (X_train, y_train), (X_test, y_test) = get_test_data(num_train=train_samples, num_test=test_samples, input_shape=(input_dim,), classification=True, num_classes=num_classes) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [callbacks.TerminateOnNaN()] model = Sequential() initializer = initializers.Constant(value=1e5) for _ in range(5): model.add(Dense(num_hidden, input_dim=input_dim, activation='relu', kernel_initializer=initializer)) model.add(Dense(num_classes, activation='linear')) model.compile(loss='mean_squared_error', optimizer='rmsprop') # case 1 fit history = model.fit(X_train, y_train, batch_size=batch_size, validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf # case 2 fit_generator def data_generator(): max_batch_index = len(X_train) // batch_size i = 0 while 1: yield (X_train[i * batch_size: (i + 1) * batch_size], y_train[i * batch_size: (i + 1) * batch_size]) i += 1 i = i % max_batch_index history = model.fit_generator(data_generator(), len(X_train), validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf or np.isnan(loss[0])
Example #30
Source File: test_callbacks.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_TerminateOnNaN(): np.random.seed(1337) (X_train, y_train), (X_test, y_test) = get_test_data(num_train=train_samples, num_test=test_samples, input_shape=(input_dim,), classification=True, num_classes=num_classes) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [callbacks.TerminateOnNaN()] model = Sequential() initializer = initializers.Constant(value=1e5) for _ in range(5): model.add(Dense(num_hidden, input_dim=input_dim, activation='relu', kernel_initializer=initializer)) model.add(Dense(num_classes, activation='linear')) model.compile(loss='mean_squared_error', optimizer='rmsprop') # case 1 fit history = model.fit(X_train, y_train, batch_size=batch_size, validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf # case 2 fit_generator def data_generator(): max_batch_index = len(X_train) // batch_size i = 0 while 1: yield (X_train[i * batch_size: (i + 1) * batch_size], y_train[i * batch_size: (i + 1) * batch_size]) i += 1 i = i % max_batch_index history = model.fit_generator(data_generator(), len(X_train), validation_data=(X_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) == 1 assert loss[0] == np.inf or np.isnan(loss[0])