Python sklearn.discriminant_analysis.LinearDiscriminantAnalysis() Examples
The following are 30
code examples of sklearn.discriminant_analysis.LinearDiscriminantAnalysis().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.discriminant_analysis
, or try the search function
.
Example #1
Source File: testScoreWithAdapaSklearn.py From nyoka with Apache License 2.0 | 6 votes |
def test_12_lda(self): print("\ntest 12 (LDA with preprocessing) [binary-class]\n") X, X_test, y, features, target, test_file = self.data_utility.get_data_for_binary_classification() model = LinearDiscriminantAnalysis() pipeline_obj = Pipeline([ ("scaler", StandardScaler()), ("model", model) ]) pipeline_obj.fit(X,y) file_name = 'test12sklearn.pmml' skl_to_pmml(pipeline_obj, features, target, file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file) model_pred = pipeline_obj.predict(X_test) model_prob = pipeline_obj.predict_proba(X_test) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #2
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_linear_discriminant_analysis_decfunc(self): X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) y = np.array([1, 1, 1, 2, 2, 2]) X_test = np.array([[-0.8, -1], [0, 1]], dtype=np.float32) model = LinearDiscriminantAnalysis().fit(X, y) model_onnx = convert_sklearn( model, "linear model", [("input", FloatTensorType([None, X_test.shape[1]]))], options={id(model): {'raw_scores': True}}) self.assertIsNotNone(model_onnx) dump_data_and_model( X_test, model, model_onnx, basename="SklearnLinearDiscriminantAnalysisBinRawScore-Out0", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", methods=['predict', 'decision_function'] )
Example #3
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_linear_discriminant_analysis(self): X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) y = np.array([1, 1, 1, 2, 2, 2]) X_test = np.array([[-0.8, -1], [-2, -1]], dtype=np.float32) model = LinearDiscriminantAnalysis().fit(X, y) model_onnx = convert_sklearn( model, "linear model", [("input", FloatTensorType([None, X_test.shape[1]]))]) self.assertIsNotNone(model_onnx) dump_data_and_model( X_test, model, model_onnx, basename="SklearnLinearDiscriminantAnalysisBin-Dec3", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", )
Example #4
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_linear_discriminant_analysis_decfunc3(self): X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) y = np.array([1, 1, 1, 2, 2, 3]) X_test = np.array([[-0.8, -1], [0, 1]], dtype=np.float32) model = LinearDiscriminantAnalysis().fit(X, y) model_onnx = convert_sklearn( model, "linear model", [("input", FloatTensorType([None, X_test.shape[1]]))], options={id(model): {'raw_scores': True}}) self.assertIsNotNone(model_onnx) dump_data_and_model( X_test, model, model_onnx, basename="SklearnLinearDiscriminantAnalysisBinRawScore3-Out0", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", methods=['predict', 'decision_function'] )
Example #5
Source File: create.py From pyrsa with GNU Lesser General Public License v3.0 | 6 votes |
def rdm_lda_kfold(x, labels): from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import cross_val_score lda = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto') folding = RepeatedStratifiedKFold(n_splits=3, n_repeats=3) objects = numpy.unique(labels) pairs = list(itertools.combinations(objects, 2)) npairs = len(pairs) utv = numpy.full([npairs,], numpy.nan) for p in trange(npairs, desc='pairs', leave=False, ascii=True): pair = pairs[p] pair_mask = numpy.isin(labels, pair) x_pair = x[pair_mask, :] labels_pair = labels[pair_mask] scores = cross_val_score(lda, x_pair, labels_pair, cv=folding) utv[p] = scores.mean() return utv
Example #6
Source File: common.py From gumpy with MIT License | 6 votes |
def __init__(self, **kwargs): """Initializes a ShrinkingLDA classifier. Additional arguments will be forwarded to the underlying classifier instantiation, which is ``sklearn.discriminant_analysis.LinearDiscriminantAnalysis`` here. Keyword Arguments ----------------- solver: string, default = lsqr Solver used in LDA shrinkage: string, default = 'auto' """ super(ShrinkingLDA, self).__init__() self.solver = kwargs.pop('solver', 'lsqr') self.shrinkage = kwargs.pop('shrinkage', 'auto') self.clf = _LinearDiscriminantAnalysis(solver=self.solver, shrinkage=self.shrinkage, **kwargs)
Example #7
Source File: feature_selection.py From default-credit-card-prediction with MIT License | 6 votes |
def lda_selection(X,y,n_components): """ Performs the Fisher's Linear Discrimination Analysis keeps the most discriminative features Keyword arguments: X -- The feature vectors y -- The target vector n_components -- Number of features to keep """ if verbose: print '\nPerforming Linear Discrimination Analysis ...' lda = LDA(n_components = n_components,solver='eigen') discriminative_attributes = lda.fit(X, y).transform(X) return discriminative_attributes #Random Forest Classifier with an additional attribute coef_, in order to be usable by the Recursive Feature Elimination method
Example #8
Source File: BaggedLDA.py From Awesome-Scripts with MIT License | 6 votes |
def main(): # prepare data trainingSet=[] testSet=[] accuracy = 0.0 split = 0.25 loadDataset('../Dataset/LDAdata.csv', split, trainingSet, testSet) print('Train set: ' + repr(len(trainingSet))) print('Test set: ' + repr(len(testSet))) trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1] columns = trainData.shape[1] X = np.array(trainData) y = np.array(trainingSet)[:,columns] clf = BaggingClassifier(LDA()) clf.fit(X, y) testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1] X_test = np.array(testData) y_test = np.array(testSet)[:,columns] accuracy = clf.score(X_test,y_test) accuracy *= 100 print("Accuracy %:",accuracy)
Example #9
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2)
Example #10
Source File: testScoreWithAdapaSklearn.py From nyoka with Apache License 2.0 | 6 votes |
def test_11_lda(self): print("\ntest 11 (LDA with preprocessing) [multi-class]\n") X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification() model = LinearDiscriminantAnalysis() pipeline_obj = Pipeline([ ("scaler", MaxAbsScaler()), ("model", model) ]) pipeline_obj.fit(X,y) file_name = 'test11sklearn.pmml' skl_to_pmml(pipeline_obj, features, target, file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file) model_pred = pipeline_obj.predict(X_test) model_prob = pipeline_obj.predict_proba(X_test) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #11
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1)
Example #12
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_)
Example #13
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver)
Example #14
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver)
Example #15
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_)
Example #16
Source File: test_common.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _tested_estimators(): for name, Estimator in all_estimators(): if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue # FIXME _skip_test should be used here (if we could) required_parameters = getattr(Estimator, "_required_parameters", []) if len(required_parameters): if required_parameters in (["estimator"], ["base_estimator"]): if issubclass(Estimator, RegressorMixin): estimator = Estimator(Ridge()) else: estimator = Estimator(LinearDiscriminantAnalysis()) else: warnings.warn("Can't instantiate estimator {} which requires " "parameters {}".format(name, required_parameters), SkipTestWarning) continue else: estimator = Estimator() yield name, estimator
Example #17
Source File: explorers.py From yass with Apache License 2.0 | 6 votes |
def plot_lda(self, group_ids, channels, sample=None, ax=None): """ Reduce dimensionality using LDA and plot data """ ax = plt if ax is None else ax scores, labels = self.scores_for_groups(group_ids, channels) lda = LDA(n_components=2) reduced = lda.fit_transform(scores, labels) for color in np.unique(group_ids).astype('int'): x = reduced[labels == color, 0] y = reduced[labels == color, 1] if sample: x = np.random.choice(x, size=int(sample*len(x)), replace=False) y = np.random.choice(x, size=int(sample*len(y)), replace=False) ax.scatter(x, y, label='Group {}'.format(color), alpha=0.7) ax.legend()
Example #18
Source File: explorers.py From yass with Apache License 2.0 | 6 votes |
def plot_closest_clusters_to(self, group_id, k, mode='LDA', sample=None, ax=None): """Visualize close clusters """ ax = plt if ax is None else ax # get similar templates to template with id group_id groups = self.close_templates(group_id, k) # get the neighbors for the main channel in group_id main = self.main_channel_for_group(group_id) neighbors = self.recording_explorer.neighbors_for_channel(main) if mode == 'LDA': self.plot_lda(groups, neighbors, sample=sample, ax=ax) elif mode == 'PCA': self.plot_pca(groups, neighbors, sample=sample, ax=ax) else: raise ValueError('Only PCA and LDA modes are supported')
Example #19
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2)
Example #20
Source File: merge.py From yass with Apache License 2.0 | 5 votes |
def run_diptest2(features, assignment): ''' Parameters ---------- pca_wf: pca projected data assignment: spike assignments ''' _, n_spikes = np.unique(assignment, return_counts=True) id_big = np.argmax(n_spikes) id_small = np.argmin(n_spikes) n_diff = n_spikes[id_big] - n_spikes[id_small] if n_diff > 0: n_repeat = int(np.ceil(np.max(n_spikes)/np.min(n_spikes))) idx_big = np.where(assignment == id_big)[0] pvals = np.zeros(n_repeat) for j in range(n_repeat): idx_remove = np.random.choice(idx_big, n_diff, replace=False) idx_in = np.ones(len(assignment), 'bool') idx_in[idx_remove] = False # fit lda lda = LDA(n_components = 1) lda_feat = lda.fit_transform(features[idx_in], assignment[idx_in]).ravel() # check tp of lda pvals[j] = dp(lda_feat)[1] pval = np.median(pvals) else: lda = LDA(n_components = 1) lda_feat = lda.fit_transform(features, assignment).ravel() pval = dp(lda_feat)[1] return pval
Example #21
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0)
Example #22
Source File: merge.py From yass with Apache License 2.0 | 5 votes |
def run_ldatest(features, assignment): # determine which one has more spikes _, n_spikes = np.unique(assignment, return_counts=True) id_big = np.argmax(n_spikes) id_small = np.argmin(n_spikes) n_diff = n_spikes[id_big] - n_spikes[id_small] if n_diff > 0: n_repeat = int(np.ceil(np.max(n_spikes)/np.min(n_spikes))) idx_big = np.where(assignment == id_big)[0] lda_probs = np.zeros(n_repeat) for j in range(n_repeat): idx_remove = np.random.choice(idx_big, n_diff, replace=False) idx_in = np.ones(len(assignment), 'bool') idx_in[idx_remove] = False # fit lda lda = LDA(n_components = 1) lda.fit(features[idx_in], assignment[idx_in]) # check tp of lda lda_probs[j] = lda.score(features[idx_in], assignment[idx_in]) lda_prob = np.median(lda_probs) else: lda = LDA(n_components = 1) lda.fit(features, assignment) lda_prob = lda.score(features, assignment) return lda_prob
Example #23
Source File: explorers.py From yass with Apache License 2.0 | 5 votes |
def plot_all_clusters(self, k, mode='LDA', sample=None, ax=None, sharex=True, sharey=False, max_cols=None): ax = plt if ax is None else ax fn = partial(self.plot_closest_clusters_to, k=k, mode=mode, sample=sample) _make_grid_plot(fn, self.all_ids, ax, sharex, sharey, max_cols)
Example #24
Source File: test_discriminant_analysis.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.discriminant_analysis.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) self.assertIs(df.discriminant_analysis.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis) self.assertIs(df.da.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) self.assertIs(df.da.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis)
Example #25
Source File: test_discriminant_analysis.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper_deprecated(self): df = pdml.ModelFrame([]) with tm.assert_produces_warning(FutureWarning): self.assertIs(df.lda.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) with tm.assert_produces_warning(FutureWarning): self.assertIs(df.qda.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis)
Example #26
Source File: tangentspace.py From decoding-brain-challenge-2016 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _fit_lda(self, X, y, sample_weight=None): """Helper to fit LDA.""" self.classes_ = numpy.unique(y) self._lda = LDA(n_components=len(self.classes_) - 1, solver='lsqr', shrinkage='auto') ts = self._ts.fit_transform(X, sample_weight=sample_weight) self._lda.fit(ts, y) W = self._lda.coef_.copy() self._W = numpy.dot( numpy.dot(W.T, numpy.linalg.pinv(numpy.dot(W, W.T))), W) return ts
Example #27
Source File: fextraction.py From Open-Myo with GNU General Public License v3.0 | 5 votes |
def feature_scaling(feature_matrix,target,reductor=None,scaler=None): lda = LDA(n_components=2) minmax = MinMaxScaler(feature_range=(-1,1)) if not reductor: reductor = lda.fit(feature_matrix,target) feature_matrix_lda = reductor.transform(feature_matrix) if not scaler: scaler = minmax.fit(feature_matrix_lda) feature_matrix_scaled = scaler.transform(feature_matrix_lda) return feature_matrix_scaled,reductor,scaler
Example #28
Source File: lda.py From SecuML with GNU General Public License v2.0 | 5 votes |
def __init__(self, conf): SemiSupervisedProjection.__init__(self, conf) self.projection = discriminant_analysis.LinearDiscriminantAnalysis( n_components=conf.num_components) if not self.conf.multiclass: self.conf.logger.warning( 'Lda projection without families supervision. ' 'The projection space is of dimension 1, and so the ' 'projected instances cannot be displayed with hexagonal ' 'binnnings.')
Example #29
Source File: lda.py From SecuML with GNU General Public License v2.0 | 5 votes |
def gen_input_labels(self, instances): labels, instances = SemiSupervisedProjection.gen_input_labels( self, instances) num_classes = len(set(labels)) if (self.conf.num_components is not None and self.conf.num_components > num_classes - 1): self.conf.logger.warning( 'The embedding dimension must be smaller ' 'than the number of classes - 1. ' 'num_components is set to %d.' % (num_classes - 1)) self.num_components = num_classes - 1 self.projection = discriminant_analysis.LinearDiscriminantAnalysis( n_components=self.conf.num_components) return labels, instances
Example #30
Source File: test_testing.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3)