Python sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis() Examples
The following are 18
code examples of sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.discriminant_analysis
, or try the search function
.
Example #1
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5)
Example #2
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_qda_store_covariance(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert not hasattr(clf, 'covariance_') # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariance=True).fit(X6, y6) assert hasattr(clf, 'covariance_') assert_array_almost_equal( clf.covariance_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariance_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) )
Example #3
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert np.any(y_pred != y6) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5)
Example #4
Source File: classifier.py From libfaceid with MIT License | 6 votes |
def __init__(self, classifier=FaceClassifierModels.DEFAULT): self._clf = None if classifier == FaceClassifierModels.LINEAR_SVM: self._clf = SVC(C=1.0, kernel="linear", probability=True) elif classifier == FaceClassifierModels.NAIVE_BAYES: self._clf = GaussianNB() elif classifier == FaceClassifierModels.RBF_SVM: self._clf = SVC(C=1, kernel='rbf', probability=True, gamma=2) elif classifier == FaceClassifierModels.NEAREST_NEIGHBORS: self._clf = KNeighborsClassifier(1) elif classifier == FaceClassifierModels.DECISION_TREE: self._clf = DecisionTreeClassifier(max_depth=5) elif classifier == FaceClassifierModels.RANDOM_FOREST: self._clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1) elif classifier == FaceClassifierModels.NEURAL_NET: self._clf = MLPClassifier(alpha=1) elif classifier == FaceClassifierModels.ADABOOST: self._clf = AdaBoostClassifier() elif classifier == FaceClassifierModels.QDA: self._clf = QuadraticDiscriminantAnalysis() print("classifier={}".format(FaceClassifierModels(classifier)))
Example #5
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_qda_store_covariance(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_false(hasattr(clf, 'covariance_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariance=True).fit(X6, y6) assert_true(hasattr(clf, 'covariance_')) assert_array_almost_equal( clf.covariance_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariance_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) )
Example #6
Source File: BaggedQDA.py From Awesome-Scripts with MIT License | 6 votes |
def main(): # prepare data trainingSet=[] testSet=[] accuracy = 0.0 split = 0.25 loadDataset('../Dataset/combined.csv', split, trainingSet, testSet) print 'Train set: ' + repr(len(trainingSet)) print 'Test set: ' + repr(len(testSet)) # generate predictions predictions=[] trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1] columns = trainData.shape[1] X = np.array(trainData) y = np.array(trainingSet)[:,columns] clf = BaggingClassifier(QDA()) clf.fit(X, y) testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1] X_test = np.array(testData) y_test = np.array(testSet)[:,columns] accuracy = clf.score(X_test,y_test) accuracy *= 100 print("Accuracy %:",accuracy)
Example #7
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert np.any(y_pred3 != y7) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4)
Example #8
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4)
Example #9
Source File: common.py From gumpy with MIT License | 5 votes |
def __init__(self, **kwargs): super(QuadraticLDA, self).__init__() self.clf = _QuadraticDiscriminantAnalysis(**kwargs)
Example #10
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_qda_deprecation(): # Test the deprecation clf = QuadraticDiscriminantAnalysis(store_covariances=True) assert_warns_message(DeprecationWarning, "'store_covariances' was renamed" " to store_covariance in version 0.19 and will be " "removed in 0.21.", clf.fit, X, y) # check that covariance_ (and covariances_ with warning) is stored assert_warns_message(DeprecationWarning, "Attribute covariances_ was " "deprecated in version 0.19 and will be removed " "in 0.21. Use covariance_ instead", getattr, clf, 'covariances_')
Example #11
Source File: test_discriminant_analysis.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos)
Example #12
Source File: test_discriminant_analysis.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper_deprecated(self): df = pdml.ModelFrame([]) with tm.assert_produces_warning(FutureWarning): self.assertIs(df.lda.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) with tm.assert_produces_warning(FutureWarning): self.assertIs(df.qda.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis)
Example #13
Source File: test_discriminant_analysis.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.discriminant_analysis.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) self.assertIs(df.discriminant_analysis.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis) self.assertIs(df.da.LinearDiscriminantAnalysis, da.LinearDiscriminantAnalysis) self.assertIs(df.da.QuadraticDiscriminantAnalysis, da.QuadraticDiscriminantAnalysis)
Example #14
Source File: quadratic_discriminant_analysis.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, priors=None, reg_param=0.0, store_covariance=False, tol=0.0001, store_covariances=None): self._hyperparams = { 'priors': priors, 'reg_param': reg_param, 'store_covariance': store_covariance, 'tol': tol, 'store_covariances': store_covariances} self._wrapped_model = Op(**self._hyperparams)
Example #15
Source File: scikitlearn.py From sia-cog with MIT License | 5 votes |
def getModels(): result = [] result.append("LinearRegression") result.append("BayesianRidge") result.append("ARDRegression") result.append("ElasticNet") result.append("HuberRegressor") result.append("Lasso") result.append("LassoLars") result.append("Rigid") result.append("SGDRegressor") result.append("SVR") result.append("MLPClassifier") result.append("KNeighborsClassifier") result.append("SVC") result.append("GaussianProcessClassifier") result.append("DecisionTreeClassifier") result.append("RandomForestClassifier") result.append("AdaBoostClassifier") result.append("GaussianNB") result.append("LogisticRegression") result.append("QuadraticDiscriminantAnalysis") return result
Example #16
Source File: test_discriminant_analysis.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos)
Example #17
Source File: iq_discriminators.py From qiskit-ignis with Apache License 2.0 | 4 votes |
def __init__(self, cal_results: Union[Result, List[Result]], qubit_mask: List[int], expected_states: List[str] = None, standardize: bool = False, schedules: Union[List[str], List[Schedule]] = None, discriminator_parameters: dict = None): """ Args: cal_results (Union[Result, List[Result]]): calibration results, Result or list of Result used to fit the discriminator. qubit_mask (List[int]): determines which qubit's level 1 data to use in the discrimination process. expected_states (List[str]): a list that should have the same length as schedules. All results in cal_results are used if schedules is None. expected_states must have the corresponding length. standardize (bool): if true the discriminator will standardize the xdata using the internal method _scale_data. schedules (Union[List[str], List[Schedule]]): The schedules or a subset of schedules in cal_results used to train the discriminator. The user may also pass the name of the schedules instead of the schedules. If schedules is None, then all the schedules in cal_results are used. discriminator_parameters (dict): parameters for Sklearn's LDA. """ if not discriminator_parameters: discriminator_parameters = {} store_cov = discriminator_parameters.get('store_covariance', False) tol = discriminator_parameters.get('tol', 1.0e-4) self._qda = QuadraticDiscriminantAnalysis(store_covariance=store_cov, tol=tol) # Also sets the x and y data. IQDiscriminationFitter.__init__(self, cal_results, qubit_mask, expected_states, standardize, schedules) self._description = 'Quadratic IQ discriminator for measurement ' \ 'level 1.' self.fit()
Example #18
Source File: scikitlearn.py From sia-cog with MIT License | 4 votes |
def getSKLearnModel(modelName): if modelName == 'LinearRegression': model = linear_model.LinearRegression() elif modelName == 'BayesianRidge': model = linear_model.BayesianRidge() elif modelName == 'ARDRegression': model = linear_model.ARDRegression() elif modelName == 'ElasticNet': model = linear_model.ElasticNet() elif modelName == 'HuberRegressor': model = linear_model.HuberRegressor() elif modelName == 'Lasso': model = linear_model.Lasso() elif modelName == 'LassoLars': model = linear_model.LassoLars() elif modelName == 'Rigid': model = linear_model.Ridge() elif modelName == 'SGDRegressor': model = linear_model.SGDRegressor() elif modelName == 'SVR': model = SVR() elif modelName=='MLPClassifier': model = MLPClassifier() elif modelName=='KNeighborsClassifier': model = KNeighborsClassifier() elif modelName=='SVC': model = SVC() elif modelName=='GaussianProcessClassifier': model = GaussianProcessClassifier() elif modelName=='DecisionTreeClassifier': model = DecisionTreeClassifier() elif modelName=='RandomForestClassifier': model = RandomForestClassifier() elif modelName=='AdaBoostClassifier': model = AdaBoostClassifier() elif modelName=='GaussianNB': model = GaussianNB() elif modelName=='LogisticRegression': model = linear_model.LogisticRegression() elif modelName=='QuadraticDiscriminantAnalysis': model = QuadraticDiscriminantAnalysis() return model