Python matplotlib.collections() Examples

The following are 15 code examples of matplotlib.collections(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib , or try the search function .
Example #1
Source File: _plot.py    From spm1d with GNU General Public License v3.0 6 votes vote down vote up
def _set_ylim(self, pad=0.075):
		def minmax(x):
			return np.ma.min(x), np.ma.max(x)
		ax          = self.ax
		ymin,ymax   = +1e10, -1e10
		for line in ax.lines:
			y0,y1   = minmax( line.get_data()[1] )
			ymin    = min(y0, ymin)
			ymax    = max(y1, ymax)
		for collection in ax.collections:
			datalim = collection.get_datalim(ax.transData)
			y0,y1   = minmax(  np.asarray(datalim)[:,1]  )
			ymin    = min(y0, ymin)
			ymax    = max(y1, ymax)
		for text in ax.texts:
			r       = matplotlib.backend_bases.RendererBase()
			bbox    = text.get_window_extent(r)
			y0,y1   = ax.transData.inverted().transform(bbox)[:,1]
			ymin    = min(y0, ymin)
			ymax    = max(y1, ymax)
		dy = 0.075*(ymax-ymin)
		ax.set_ylim(ymin-dy, ymax+dy) 
Example #2
Source File: core.py    From neuropythy with GNU Affero General Public License v3.0 5 votes vote down vote up
def on_key(self, event):
        import matplotlib.collections
        if event.inaxes != self.line.axes: return
        if event.key == 'tab':
            # we go to the next plot...
            if not self.plot_list: return
            self.plot_list[self.current_plot].set_visible(False)
            tmp = self.current_plot
            self.current_plot = (self.current_plot + 1) % len(self.plot_list)
            a = self.plot_list[self.current_plot]
            if isinstance(a, matplotlib.collections.TriMesh): a.set_visible(True)
            else: self.plot_list[self.current_plot] = a(self.axes)
            a.figure.canvas.draw() 
Example #3
Source File: Map.py    From PyMICAPS with GNU General Public License v2.0 5 votes vote down vote up
def DrawContourAndMark(contour, x, y, z, level, clipborder, patch, m):

        # 是否绘制等值线 ------ 等值线和标注是一体的

        if contour.contour['visible']:

            matplotlib.rcParams['contour.negative_linestyle'] = 'dashed'
            if contour.contour['colorline']:
                CS1 = m.contour(x, y, z, levels=level, linewidths=contour.contour['linewidth'])
            else:
                CS1 = m.contour(x,
                                y,
                                z,
                                levels=level,
                                linewidths=contour.contour['linewidth'],
                                colors=contour.contour['linecolor'])

            # 是否绘制等值线标注
            CS2 = None
            if contour.contourlabel['visible']:
                CS2 = plt.clabel(CS1,
                                 inline=1,
                                 fmt=contour.contourlabel['fmt'],
                                 inline_spacing=contour.contourlabel['inlinespacing'],
                                 fontsize=contour.contourlabel['fontsize'],
                                 colors=contour.contourlabel['fontcolor'])

            # 用区域边界裁切等值线图
            if clipborder.path is not None and clipborder.using:
                for collection in CS1.collections:
                    # collection.set_clip_on(True)
                    collection.set_clip_path(patch)

                if CS2 is not None:
                    for text in CS2:
                        if not clipborder.path.contains_point(text.get_position()):
                            text.remove() 
Example #4
Source File: parasite_axes.py    From Computable with MIT License 5 votes vote down vote up
def _contour(self, method_name, *XYCL, **kwargs):

        if len(XYCL) <= 2:
            C = XYCL[0]
            ny, nx = C.shape

            gx = np.arange(0., nx, 1.)
            gy = np.arange(0., ny, 1.)

            X,Y = np.meshgrid(gx, gy)
            CL = XYCL
        else:
            X, Y = XYCL[:2]
            CL = XYCL[2:]

        contour_routine = self._get_base_axes_attr(method_name)

        if kwargs.has_key("transform"):
            cont = contour_routine(self, X, Y, *CL, **kwargs)
        else:
            orig_shape = X.shape
            xy = np.vstack([X.flat, Y.flat])
            xyt=xy.transpose()
            wxy = self.transAux.transform(xyt)
            gx, gy = wxy[:,0].reshape(orig_shape), wxy[:,1].reshape(orig_shape)
            cont = contour_routine(self, gx, gy, *CL, **kwargs)
            for c in cont.collections:
                c.set_transform(self._parent_axes.transData)

        return cont 
Example #5
Source File: parasite_axes.py    From Computable with MIT License 5 votes vote down vote up
def _get_handles(ax):
    handles = ax.lines[:]
    handles.extend(ax.patches)
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.LineCollection)])
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.RegularPolyCollection)])
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.CircleCollection)])

    return handles 
Example #6
Source File: parasite_axes.py    From matplotlib-4-abaqus with MIT License 5 votes vote down vote up
def _contour(self, method_name, *XYCL, **kwargs):

        if len(XYCL) <= 2:
            C = XYCL[0]
            ny, nx = C.shape

            gx = np.arange(0., nx, 1.)
            gy = np.arange(0., ny, 1.)

            X,Y = np.meshgrid(gx, gy)
            CL = XYCL
        else:
            X, Y = XYCL[:2]
            CL = XYCL[2:]

        contour_routine = self._get_base_axes_attr(method_name)

        if kwargs.has_key("transform"):
            cont = contour_routine(self, X, Y, *CL, **kwargs)
        else:
            orig_shape = X.shape
            xy = np.vstack([X.flat, Y.flat])
            xyt=xy.transpose()
            wxy = self.transAux.transform(xyt)
            gx, gy = wxy[:,0].reshape(orig_shape), wxy[:,1].reshape(orig_shape)
            cont = contour_routine(self, gx, gy, *CL, **kwargs)
            for c in cont.collections:
                c.set_transform(self._parent_axes.transData)

        return cont 
Example #7
Source File: parasite_axes.py    From matplotlib-4-abaqus with MIT License 5 votes vote down vote up
def _get_handles(ax):
    handles = ax.lines[:]
    handles.extend(ax.patches)
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.LineCollection)])
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.RegularPolyCollection)])
    handles.extend([c for c in ax.collections
                    if isinstance(c, mcoll.CircleCollection)])

    return handles 
Example #8
Source File: lineplot.py    From PyXRF with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def plot_selected_energy_range(self, *, e_low=None, e_high=None):
        """
        Plot the range of energies selected for processing. The range may be optionally
        provided as arguments. The range values that are not provided, are read from
        globally accessible dictionary of parameters. The values passed as arguments
        are mainly used if the function is called during interactive update of the
        range, when the order of update is undetermined and the parameter dictionary
        may be updated after the function is called.
        """
        # The range of energy selected for analysis
        if e_low is None:
            e_low = self.param_model.param_new['non_fitting_values']['energy_bound_low']['value']
        if e_high is None:
            e_high = self.param_model.param_new['non_fitting_values']['energy_bound_high']['value']

        n_x = 4096  # Set to the maximum possible number of points

        # Generate the values for 'energy' axis
        x_v = (self.parameters['e_offset']['value'] +
               np.arange(n_x) *
               self.parameters['e_linear']['value'] +
               np.arange(n_x) ** 2 *
               self.parameters['e_quadratic']['value'])

        ss = (x_v < e_high) & (x_v > e_low)
        y_min, y_max = 1e-30, 1e30  # Select the max and min values for plotted rectangles

        # Remove the plot if it exists
        if self.plot_energy_barh in self._ax.collections:
            self._ax.collections.remove(self.plot_energy_barh)

        # Create the new plot (based on new parameters if necessary
        self.plot_energy_barh = BrokenBarHCollection.span_where(
            x_v, ymin=y_min, ymax=y_max, where=ss, facecolor='white', edgecolor='yellow', alpha=1)
        self._ax.add_collection(self.plot_energy_barh) 
Example #9
Source File: map.py    From skymapper with MIT License 5 votes vote down vote up
def vertex(self, vertices, color=None, vmin=None, vmax=None, **kwargs):
        """Plot polygons (e.g. Healpix vertices)

        Args:
            vertices: cell boundaries in RA/Dec, from getCountAtLocations()
            color: string or matplib color, or numeric array to set polygon colors
            vmin: if color is numeric array, use vmin to set color of minimum
            vmax: if color is numeric array, use vmin to set color of minimum
            **kwargs: matplotlib.collections.PolyCollection keywords
        Returns:
            matplotlib.collections.PolyCollection
        """
        vertices_ = np.empty_like(vertices)
        vertices_[:,:,0], vertices_[:,:,1] = self.proj.transform(vertices[:,:,0], vertices[:,:,1])

        # remove vertices which are split at the outer meridians
        # find variance of vertice nodes large compared to dispersion of centers
        centers = np.mean(vertices, axis=1)
        x, y = self.proj.transform(centers[:,0], centers[:,1])
        var = np.sum(np.var(vertices_, axis=1), axis=-1) / (x.var() + y.var())
        sel = var < 0.05
        vertices_ = vertices_[sel]

        from matplotlib.collections import PolyCollection
        zorder = kwargs.pop("zorder", 0) # same as for imshow: underneath everything
        rasterized = kwargs.pop('rasterized', True)
        alpha = kwargs.pop('alpha', 1)
        if alpha < 1:
            lw = kwargs.pop('lw', 0)
        else:
            lw = kwargs.pop('lw', None)
        coll = PolyCollection(vertices_, zorder=zorder, rasterized=rasterized, alpha=alpha, lw=lw, **kwargs)
        if color is not None:
            coll.set_array(color[sel])
            coll.set_clim(vmin=vmin, vmax=vmax)
        coll.set_edgecolor("face")
        self.ax.add_collection(coll)
        self.ax.set_rasterization_zorder(zorder)
        return coll 
Example #10
Source File: map.py    From skymapper with MIT License 5 votes vote down vote up
def footprint(self, survey, nside, **kwargs):
        """Plot survey footprint onto map

        Uses `contains()` method of a `skymapper.Survey` derived class instance

        Args:
            survey: name of the survey, must be in keys of `skymapper.survey_register`
            nside: HealPix nside
            **kwargs: styling of `matplotlib.collections.PolyCollection`
        """

        pixels, rap, decp, vertices = healpix.getGrid(nside, return_vertices=True)
        inside = survey.contains(rap, decp)
        return self.vertex(vertices[inside], **kwargs) 
Example #11
Source File: plotlayer.py    From omg-tools with GNU Lesser General Public License v3.0 5 votes vote down vote up
def _update_axis_2d(axis, info, data):
    if 'lines' in data:
        for p, dat in enumerate(data['lines']):
            axis.lines[p].set_data(dat[0, :].ravel(), dat[1, :].ravel())
    if 'surfaces' in data:
        for p, dat in enumerate(data['surfaces']):
            axis.collections[p].set_verts([dat.T.tolist()])
    axis.relim()
    scalex = ('xlim' not in info or info['xlim'] is None)
    scaley = ('ylim' not in info or info['ylim'] is None)
    axis.autoscale_view(True, scalex, scaley) 
Example #12
Source File: plotlayer.py    From omg-tools with GNU Lesser General Public License v3.0 5 votes vote down vote up
def _update_axis_3d(axis, info, data):
    if 'lines' in data:
        for p, dat in enumerate(data['lines']):
            axis.lines[p].set_data(dat[0, :].ravel(), dat[1, :].ravel())
            axis.lines[p].set_3d_properties(dat[2, :].ravel())
    if 'surfaces' in data:
        for p, dat in enumerate(data['surfaces']):
            axis.collections[p].set_verts([dat.T.tolist()])
    axis.relim()
    scalex = ('xlim' not in info or info['xlim'] is None)
    scaley = ('ylim' not in info or info['ylim'] is None)
    scalez = ('zlim' not in info or info['zlim'] is None)
    axis.autoscale_view(True, scalex, scaley, scalez)
    if 'aspect_equal' in info and info['aspect_equal']:
        # hack due to bug in matplotlib3d
        limits = []
        if 'xlim' in info:
            limits.append(info['xlim'])
        else:
            limits.append(axis.get_xlim3d())
        if 'ylim' in info:
            limits.append(info['ylim'])
        else:
            limits.append(axis.get_ylim3d())
        if 'zlim' in info:
            limits.append(info['zlim'])
        else:
            limits.append(axis.get_zlim3d())
        ranges = [abs(lim[1] - lim[0]) for lim in limits]
        centra = [np.mean(lim) for lim in limits]
        radius = 0.5*max(ranges)
        axis.set_xlim3d([centra[0] - radius, centra[0] + radius])
        axis.set_ylim3d([centra[1] - radius, centra[1] + radius])
        axis.set_zlim3d([centra[2] - radius, centra[2] + radius]) 
Example #13
Source File: complexity_delay.py    From NeuroKit with MIT License 4 votes vote down vote up
def _embedding_delay_plot(
    signal, metric_values, tau_sequence, tau=1, metric="Mutual Information", ax0=None, ax1=None, plot="2D"
):

    # Prepare figure
    if ax0 is None and ax1 is None:
        fig = plt.figure(constrained_layout=False)
        spec = matplotlib.gridspec.GridSpec(ncols=1, nrows=2, height_ratios=[1, 3], width_ratios=[2])
        ax0 = fig.add_subplot(spec[0])
        if plot == "2D":
            ax1 = fig.add_subplot(spec[1])
        elif plot == "3D":
            ax1 = fig.add_subplot(spec[1], projection="3d")
    else:
        fig = None

    ax0.set_title("Optimization of Delay (tau)")
    ax0.set_xlabel("Time Delay (tau)")
    ax0.set_ylabel(metric)
    ax0.plot(tau_sequence, metric_values, color="#FFC107")
    ax0.axvline(x=tau, color="#E91E63", label="Optimal delay: " + str(tau))
    ax0.legend(loc="upper right")
    ax1.set_title("Attractor")
    ax1.set_xlabel("Signal [i]")
    ax1.set_ylabel("Signal [i-" + str(tau) + "]")

    # Get data points, set axis limits
    embedded = complexity_embedding(signal, delay=tau, dimension=3)
    x = embedded[:, 0]
    y = embedded[:, 1]
    z = embedded[:, 2]
    ax1.set_xlim(x.min(), x.max())
    ax1.set_ylim(x.min(), x.max())

    # Colors
    norm = plt.Normalize(z.min(), z.max())
    cmap = plt.get_cmap("plasma")
    colors = cmap(norm(x))

    # Attractor for 2D vs 3D
    if plot == "2D":
        points = np.array([x, y]).T.reshape(-1, 1, 2)
        segments = np.concatenate([points[:-1], points[1:]], axis=1)
        lc = matplotlib.collections.LineCollection(segments, cmap="plasma", norm=norm)
        lc.set_array(z)
        ax1.add_collection(lc)

    elif plot == "3D":
        points = np.array([x, y, z]).T.reshape(-1, 1, 3)
        segments = np.concatenate([points[:-1], points[1:]], axis=1)
        for i in range(len(x) - 1):
            seg = segments[i]
            (l,) = ax1.plot(seg[:, 0], seg[:, 1], seg[:, 2], color=colors[i])
            l.set_solid_capstyle("round")
        ax1.set_zlabel("Signal [i-" + str(2 * tau) + "]")

    return fig 
Example #14
Source File: animation.py    From YAFS with MIT License 4 votes vote down vote up
def update_coverage_regions(self):
        point_mobiles = []

        for ix,code_mobile in enumerate(self.sim.mobile_fog_entities.keys()):
            if code_mobile in self.track_code_last_position.keys():
                (lng, lat) = self.track_code_last_position[code_mobile]
                point_mobiles.append(np.array([lng, lat]))

        point_mobiles = np.array(point_mobiles)

        if len(point_mobiles)==0:
            self.pointsVOR = self.sim.endpoints
        else:
            self.pointsVOR = np.concatenate((self.sim.endpoints, point_mobiles), axis=0)

        self.sim.coverage.update_coverage_of_endpoints(self.sim.map, self.pointsVOR)
        self.axarr.clear()

        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.xlim(0, self.sim.map.w)
        plt.ylim(self.sim.map.h, 0)
        plt.axis('off')
        plt.tight_layout()

        self.axarr.imshow(self.sim.map.img)

        # self.axarr.add_collection(
        #     mpl.collections.PolyCollection(
        #         self.sim.coverage.cells, facecolors=self.sim.coverage.colors_cells,
        #         edgecolors='k', alpha=.25))

        # p = PatchCollection(self.sim.coverage.get_polygon_to_map(),facecolors=self.sim.coverage.get_polygon_colors(),alpha=.25)
        # p.set_array(self.sim.coverage.colors_cells)

        self.axarr.add_collection(self.sim.coverage.get_polygons_on_map())


        # self.ppix = [self.sim.map.to_pixels(vp[0], vp[1]) for vp in self.pointsVOR]
        # self.ppix = np.array(self.ppix)
        # for point in self.ppix:
        #     ab = AnnotationBbox(self.car_icon, (point[0], point[1]),frameon=False)
        #     self.axarr.add_artist(ab)

        # Endpoints of the network
        self.ppix = [self.sim.map.to_pixels(vp[0], vp[1]) for vp in self.sim.endpoints]
        for point in self.ppix:
            ab = AnnotationBbox(self.endpoint_icon, (point[0], point[1]), frameon=False)
            self.axarr.add_artist(ab)

        # self.axarr.scatter(self.ppix[:, 0], self.ppix[:, 1]) 
Example #15
Source File: procar.py    From PyChemia with MIT License 4 votes vote down vote up
def parametricPlot(self, cmap='hot_r', vmin=None, vmax=None, mask=None,
                       ticks=None):
        from matplotlib.collections import LineCollection
        import matplotlib

        fig = plt.figure()
        gca = fig.gca()
        bsize, ksize = self.bands.shape

        # print self.bands
        if mask is not None:
            mbands = np.ma.masked_array(self.bands, np.abs(self.spd) < mask)
        else:
            # Faking a mask, all elemtnet are included
            mbands = np.ma.masked_array(self.bands, False)
        # print mbands

        if vmin is None:
            vmin = self.spd.min()
        if vmax is None:
            vmax = self.spd.max()
        print("normalizing to: ", (vmin, vmax))
        norm = matplotlib.colors.Normalize(vmin, vmax)

        if self.kpoints is not None:
            xaxis = [0]
            for i in range(1, len(self.kpoints)):
                d = self.kpoints[i - 1] - self.kpoints[i]
                d = np.sqrt(np.dot(d, d))
                xaxis.append(d + xaxis[-1])
            xaxis = np.array(xaxis)
        else:
            xaxis = np.arange(ksize)

        for y, z in zip(mbands, self.spd):
            # print xaxis.shape, y.shape, z.shape
            points = np.array([xaxis, y]).T.reshape(-1, 1, 2)
            segments = np.concatenate([points[:-1], points[1:]], axis=1)
            lc = LineCollection(segments, cmap=plt.get_cmap(cmap), norm=norm,
                                alpha=0.8)
            lc.set_array(z)
            lc.set_linewidth(2)
            gca.add_collection(lc)
        plt.colorbar(lc)
        plt.xlim(xaxis.min(), xaxis.max())
        plt.ylim(mbands.min(), mbands.max())

        # handling ticks
        if ticks:
            ticks, ticksNames = zip(*ticks)
            ticks = [xaxis[x] for x in ticks]
            plt.xticks(ticks, ticksNames)

        return fig