Python google.protobuf.text_format.Merge() Examples
The following are 30
code examples of google.protobuf.text_format.Merge().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
google.protobuf.text_format
, or try the search function
.
Example #1
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #2
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_use_relu_6_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6)
Example #3
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_in(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_IN uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 100.)
Example #4
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_out(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_OUT uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 40.)
Example #5
Source File: post_processing_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_build_non_max_suppressor_with_correct_parameters(self): post_processing_text_proto = """ batch_non_max_suppression { score_threshold: 0.7 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 } """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) non_max_suppressor, _ = post_processing_builder.build( post_processing_config) self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100) self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
Example #6
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_AVG uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=4. / (100. + 40.))
Example #7
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_truncated_normal_initializer(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.8 } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=0.49, tol=1e-1)
Example #8
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_use_relu_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu)
Example #9
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_do_not_use_batch_norm_if_default(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], None) self.assertEqual(conv_scope_arguments['normalizer_params'], None)
Example #10
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildManualStepLearningRate(self): learning_rate_text_proto = """ manual_step_learning_rate { schedule { step: 0 learning_rate: 0.006 } schedule { step: 90000 learning_rate: 0.00006 } } """ global_summaries = set([]) learning_rate_proto = optimizer_pb2.LearningRate() text_format.Merge(learning_rate_text_proto, learning_rate_proto) learning_rate = optimizer_builder._create_learning_rate( learning_rate_proto, global_summaries) self.assertTrue(isinstance(learning_rate, tf.Tensor))
Example #11
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Example #12
Source File: eval.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #13
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #14
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #15
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example #16
Source File: label_map_util.py From DOTA_models with Apache License 2.0 | 6 votes |
def load_labelmap(path): """Loads label map proto. Args: path: path to StringIntLabelMap proto text file. Returns: a StringIntLabelMapProto """ with tf.gfile.GFile(path, 'r') as fid: label_map_string = fid.read() label_map = string_int_label_map_pb2.StringIntLabelMap() try: text_format.Merge(label_map_string, label_map) except text_format.ParseError: label_map.ParseFromString(label_map_string) _validate_label_map(label_map) return label_map
Example #17
Source File: anchor_generator_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_build_grid_anchor_generator_with_defaults(self): anchor_generator_text_proto = """ grid_anchor_generator { } """ anchor_generator_proto = anchor_generator_pb2.AnchorGenerator() text_format.Merge(anchor_generator_text_proto, anchor_generator_proto) anchor_generator_object = anchor_generator_builder.build( anchor_generator_proto) self.assertTrue(isinstance(anchor_generator_object, grid_anchor_generator.GridAnchorGenerator)) self.assertListEqual(anchor_generator_object._scales, []) self.assertListEqual(anchor_generator_object._aspect_ratios, []) with self.test_session() as sess: base_anchor_size, anchor_offset, anchor_stride = sess.run( [anchor_generator_object._base_anchor_size, anchor_generator_object._anchor_offset, anchor_generator_object._anchor_stride]) self.assertAllEqual(anchor_offset, [0, 0]) self.assertAllEqual(anchor_stride, [16, 16]) self.assertAllEqual(base_anchor_size, [256, 256])
Example #18
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) kwargs_1, kwargs_2, kwargs_3 = scope.values() self.assertDictEqual(kwargs_1, kwargs_2) self.assertDictEqual(kwargs_1, kwargs_3)
Example #19
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_explicit_fc_op_arg_scope_has_fully_connected_op(self): conv_hyperparams_text_proto = """ op: FC regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.fully_connected) in scope)
Example #20
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_build_normalize_image(self): preprocessor_text_proto = """ normalize_image { original_minval: 0.0 original_maxval: 255.0 target_minval: -1.0 target_maxval: 1.0 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.normalize_image) self.assertEqual(args, { 'original_minval': 0.0, 'original_maxval': 255.0, 'target_minval': -1.0, 'target_maxval': 1.0, })
Example #21
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_random_crop_to_aspect_ratio(self): preprocessor_text_proto = """ random_crop_to_aspect_ratio { aspect_ratio: 0.85 overlap_thresh: 0.35 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_crop_to_aspect_ratio) self.assert_dictionary_close(args, {'aspect_ratio': 0.85, 'overlap_thresh': 0.35})
Example #22
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_resize_image(self): preprocessor_text_proto = """ resize_image { new_height: 75 new_width: 100 method: BICUBIC } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.resize_image) self.assertEqual(args, {'new_height': 75, 'new_width': 100, 'method': tf.image.ResizeMethod.BICUBIC})
Example #23
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_random_black_patches(self): preprocessor_text_proto = """ random_black_patches { max_black_patches: 20 probability: 0.95 size_to_image_ratio: 0.12 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_black_patches) self.assert_dictionary_close(args, {'max_black_patches': 20, 'probability': 0.95, 'size_to_image_ratio': 0.12})
Example #24
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_random_crop_pad_image(self): preprocessor_text_proto = """ random_crop_pad_image { min_object_covered: 0.75 min_aspect_ratio: 0.75 max_aspect_ratio: 1.5 min_area: 0.25 max_area: 0.875 overlap_thresh: 0.5 random_coef: 0.125 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_crop_pad_image) self.assertEqual(args, { 'min_object_covered': 0.75, 'aspect_ratio_range': (0.75, 1.5), 'area_range': (0.25, 0.875), 'overlap_thresh': 0.5, 'random_coef': 0.125, 'min_padded_size_ratio': None, 'max_padded_size_ratio': None, 'pad_color': None, })
Example #25
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop(self): preprocessor_text_proto = """ ssd_random_crop { operations { min_object_covered: 0.0 min_aspect_ratio: 0.875 max_aspect_ratio: 1.125 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_aspect_ratio: 0.75 max_aspect_ratio: 1.5 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)], 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #26
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_random_jitter_boxes(self): preprocessor_text_proto = """ random_jitter_boxes { ratio: 0.1 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_jitter_boxes) self.assert_dictionary_close(args, {'ratio': 0.1})
Example #27
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_random_resize_method(self): preprocessor_text_proto = """ random_resize_method { target_height: 75 target_width: 100 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_resize_method) self.assert_dictionary_close(args, {'target_size': [75, 100]})
Example #28
Source File: preprocessor_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_empty_operations(self): preprocessor_text_proto = """ ssd_random_crop { } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop) self.assertEqual(args, {})
Example #29
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_default_arg_scope_has_conv2d_op(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.conv2d) in scope)
Example #30
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_default_arg_scope_has_separable_conv2d_op(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.separable_conv2d) in scope)