Python tflearn.data_utils.to_categorical() Examples
The following are 6
code examples of tflearn.data_utils.to_categorical().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tflearn.data_utils
, or try the search function
.
Example #1
Source File: data_helpers.py From Text-Pairs-Relation-Classification with Apache License 2.0 | 6 votes |
def pad_data(data, pad_seq_len): """ Padding each sentence of research data according to the max sentence length. Return the padded data and data labels. Args: data: The research data pad_seq_len: The max sentence length of research data Returns: data_front: The padded front data data_behind: The padded behind data onehot_labels: The one-hot labels """ data_front = pad_sequences(data.front_tokenindex, maxlen=pad_seq_len, value=0.) data_behind = pad_sequences(data.behind_tokenindex, maxlen=pad_seq_len, value=0.) onehot_labels = to_categorical(data.labels, nb_classes=2) return data_front, data_behind, onehot_labels
Example #2
Source File: utils.py From URLNet with Apache License 2.0 | 5 votes |
def prep_train_test(pos_x, neg_x, dev_pct): np.random.seed(10) shuffle_indices=np.random.permutation(np.arange(len(pos_x))) pos_x_shuffled = pos_x[shuffle_indices] dev_idx = -1 * int(dev_pct * float(len(pos_x))) pos_train = pos_x_shuffled[:dev_idx] pos_test = pos_x_shuffled[dev_idx:] np.random.seed(10) shuffle_indices=np.random.permutation(np.arange(len(neg_x))) neg_x_shuffled = neg_x[shuffle_indices] dev_idx = -1 * int(dev_pct * float(len(neg_x))) neg_train = neg_x_shuffled[:dev_idx] neg_test = neg_x_shuffled[dev_idx:] x_train = np.array(list(pos_train) + list(neg_train)) y_train = len(pos_train)*[1] + len(neg_train)*[0] x_test = np.array(list(pos_test) + list(neg_test)) y_test = len(pos_test)*[1] + len(neg_test)*[0] y_train = to_categorical(y_train, nb_classes=2) y_test = to_categorical(y_test, nb_classes=2) np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(x_train))) x_train = x_train[shuffle_indices] y_train = y_train[shuffle_indices] np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(x_test))) x_test = x_test[shuffle_indices] y_test = y_test[shuffle_indices] print("Train Mal/Ben split: {}/{}".format(len(pos_train), len(neg_train))) print("Test Mal/Ben split: {}/{}".format(len(pos_test), len(neg_test))) print("Train/Test split: {}/{}".format(len(y_train), len(y_test))) print("Train/Test split: {}/{}".format(len(x_train), len(x_test))) return x_train, y_train, x_test, y_test
Example #3
Source File: predict.py From GarvinBook with MIT License | 5 votes |
def load_data(dirname="cifar-10-batches-py", one_hot=False): X_train = [] Y_train = [] for i in range(1, 6): fpath = os.path.join(dirname, 'data_batch_' + str(i)) data, labels = load_batch(fpath) if i == 1: X_train = data Y_train = labels else: X_train = np.concatenate([X_train, data], axis=0) Y_train = np.concatenate([Y_train, labels], axis=0) fpath = os.path.join(dirname, 'test_batch') X_test, Y_test = load_batch(fpath) X_train = np.dstack((X_train[:, :1024], X_train[:, 1024:2048], X_train[:, 2048:])) / 255. X_train = np.reshape(X_train, [-1, 32, 32, 3]) X_test = np.dstack((X_test[:, :1024], X_test[:, 1024:2048], X_test[:, 2048:])) / 255. X_test = np.reshape(X_test, [-1, 32, 32, 3]) if one_hot: Y_train = to_categorical(Y_train, 10) Y_test = to_categorical(Y_test, 10) return (X_train, Y_train), (X_test, Y_test)
Example #4
Source File: train.py From GarvinBook with MIT License | 5 votes |
def load_data(dirname="cifar-10-batches-py", one_hot=False): X_train = [] Y_train = [] for i in range(1, 6): fpath = os.path.join(dirname, 'data_batch_' + str(i)) data, labels = load_batch(fpath) if i == 1: X_train = data Y_train = labels else: X_train = np.concatenate([X_train, data], axis=0) Y_train = np.concatenate([Y_train, labels], axis=0) fpath = os.path.join(dirname, 'test_batch') X_test, Y_test = load_batch(fpath) X_train = np.dstack((X_train[:, :1024], X_train[:, 1024:2048], X_train[:, 2048:])) / 255. X_train = np.reshape(X_train, [-1, 32, 32, 3]) X_test = np.dstack((X_test[:, :1024], X_test[:, 1024:2048], X_test[:, 2048:])) / 255. X_test = np.reshape(X_test, [-1, 32, 32, 3]) if one_hot: Y_train = to_categorical(Y_train, 10) Y_test = to_categorical(Y_test, 10) return (X_train, Y_train), (X_test, Y_test)
Example #5
Source File: rnn_utils.py From sign-language-gesture-recognition with MIT License | 4 votes |
def get_data(input_data_dump, num_frames_per_video, labels, ifTrain): """Get the data from our saved predictions or pooled features.""" # Local vars. X = [] y = [] temp_list = deque() # Open and get the features. with open(input_data_dump, 'rb') as fin: frames = pickle.load(fin) for i, frame in enumerate(frames): features = frame[0] actual = frame[1].lower() # frameCount = frame[2] # Convert our labels into binary. actual = labels[actual] # Add to the queue. if len(temp_list) == num_frames_per_video - 1: temp_list.append(features) flat = list(temp_list) X.append(np.array(flat)) y.append(actual) temp_list.clear() else: temp_list.append(features) continue print("Class Name\tNumeric Label") for key in labels: print("%s\t\t%d" % (key, labels[key])) # Numpy. X = np.array(X) y = np.array(y) print("Dataset shape: ", X.shape) # One-hot encoded categoricals. y = to_categorical(y, len(labels)) # Split into train and test. if ifTrain: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) return X_train, X_test, y_train, y_test else: return X, y
Example #6
Source File: rnn_utils.py From continuous-online-video-classification-blog with MIT License | 4 votes |
def get_data(filename, num_frames, num_classes, input_length): """Get the data from our saved predictions or pooled features.""" # Local vars. X = [] y = [] temp_list = deque() # Open and get the features. with open(filename, 'rb') as fin: frames = pickle.load(fin) for i, frame in enumerate(frames): features = frame[0] actual = frame[1] # Convert our labels into binary. if actual == 'ad': actual = 1 else: actual = 0 # Add to the queue. if len(temp_list) == num_frames - 1: temp_list.append(features) flat = list(temp_list) X.append(np.array(flat)) y.append(actual) temp_list.popleft() else: temp_list.append(features) continue print("Total dataset size: %d" % len(X)) # Numpy. X = np.array(X) y = np.array(y) # Reshape. X = X.reshape(-1, num_frames, input_length) # One-hot encoded categoricals. y = to_categorical(y, num_classes) # Split into train and test. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.1, random_state=42) return X_train, X_test, y_train, y_test