Python gym.utils.EzPickle() Examples
The following are 30
code examples of gym.utils.EzPickle().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
gym.utils
, or try the search function
.
Example #1
Source File: hopper_random_dynamics.py From rl_swiss with MIT License | 6 votes |
def __init__(self): self.multipliers = { 'body_mass_multiplier': np.ones(5), 'body_inertia_multiplier': np.ones((5,3)), 'dof_damping_multiplier': np.ones(6), 'geom_friction_multiplier': np.ones((5,3)) } MetaMujocoEnv.__init__(self, 'hopper.xml', 4) utils.EzPickle.__init__(self) self.original_params = { 'body_mass': self.model.body_mass.copy(), 'body_inertia': self.model.body_inertia.copy(), 'dof_damping': self.model.dof_damping.copy(), 'geom_friction': self.model.geom_friction.copy() }
Example #2
Source File: relocate_v0.py From mj_envs with Apache License 2.0 | 6 votes |
def __init__(self): self.target_obj_sid = 0 self.S_grasp_sid = 0 self.obj_bid = 0 curr_dir = os.path.dirname(os.path.abspath(__file__)) mujoco_env.MujocoEnv.__init__(self, curr_dir+'/assets/DAPG_relocate.xml', 5) # change actuator sensitivity self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([10, 0, 0]) self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([1, 0, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([0, -10, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([0, -1, 0]) self.target_obj_sid = self.sim.model.site_name2id("target") self.S_grasp_sid = self.sim.model.site_name2id('S_grasp') self.obj_bid = self.sim.model.body_name2id('Object') utils.EzPickle.__init__(self) self.act_mid = np.mean(self.model.actuator_ctrlrange, axis=1) self.act_rng = 0.5*(self.model.actuator_ctrlrange[:,1]-self.model.actuator_ctrlrange[:,0])
Example #3
Source File: few_shot_fetch_env.py From rl_swiss with MIT License | 6 votes |
def __init__(self, reward_type='sparse', terminate_on_success=False): initial_qpos = { 'robot0:slide0': 0.405, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], 'object1:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], } FewShotFetchEnv.__init__( self, FEW_SHOT_ENV_XML_PATH, has_object=True, block_gripper=False, n_substeps=20, gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0, obj_range=0.15, target_range=0.05, distance_threshold=0.05, initial_qpos=initial_qpos, reward_type=reward_type, goal_high_prob=1.0, min_goal_extra_height=0.15, max_goal_extra_height=0.2, min_dist_between_objs=0.1, same_color_radius=0.5, terminate_on_success=terminate_on_success ) gym_utils.EzPickle.__init__(self) self._max_episode_steps = 65
Example #4
Source File: old_version_of_color_few_shot_fetch_env.py From rl_swiss with MIT License | 6 votes |
def __init__(self, reward_type='sparse', terminate_on_success=False): initial_qpos = { 'robot0:slide0': 0.405, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], 'object1:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], } FewShotFetchEnv.__init__( self, FEW_SHOT_ENV_XML_PATH, has_object=True, block_gripper=False, n_substeps=20, gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0, obj_range=0.15, target_range=0.05, distance_threshold=0.05, initial_qpos=initial_qpos, reward_type=reward_type, goal_high_prob=1.0, min_goal_extra_height=0.15, max_goal_extra_height=0.2, min_dist_between_objs=0.1, same_color_radius=0.3, terminate_on_success=terminate_on_success ) gym_utils.EzPickle.__init__(self) self._max_episode_steps = 65
Example #5
Source File: hammer_v0.py From mj_envs with Apache License 2.0 | 6 votes |
def __init__(self): self.target_obj_sid = -1 self.S_grasp_sid = -1 self.obj_bid = -1 self.tool_sid = -1 self.goal_sid = -1 curr_dir = os.path.dirname(os.path.abspath(__file__)) mujoco_env.MujocoEnv.__init__(self, curr_dir+'/assets/DAPG_hammer.xml', 5) utils.EzPickle.__init__(self) # change actuator sensitivity self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([10, 0, 0]) self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([1, 0, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([0, -10, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([0, -1, 0]) self.target_obj_sid = self.sim.model.site_name2id('S_target') self.S_grasp_sid = self.sim.model.site_name2id('S_grasp') self.obj_bid = self.sim.model.body_name2id('Object') self.tool_sid = self.sim.model.site_name2id('tool') self.goal_sid = self.sim.model.site_name2id('nail_goal') self.act_mid = np.mean(self.model.actuator_ctrlrange, axis=1) self.act_rng = 0.5 * (self.model.actuator_ctrlrange[:, 1] - self.model.actuator_ctrlrange[:, 0])
Example #6
Source File: door_v0.py From mj_envs with Apache License 2.0 | 6 votes |
def __init__(self): self.door_hinge_did = 0 self.door_bid = 0 self.grasp_sid = 0 self.handle_sid = 0 curr_dir = os.path.dirname(os.path.abspath(__file__)) mujoco_env.MujocoEnv.__init__(self, curr_dir+'/assets/DAPG_door.xml', 5) # change actuator sensitivity self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([10, 0, 0]) self.sim.model.actuator_gainprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([1, 0, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_WRJ1'):self.sim.model.actuator_name2id('A_WRJ0')+1,:3] = np.array([0, -10, 0]) self.sim.model.actuator_biasprm[self.sim.model.actuator_name2id('A_FFJ3'):self.sim.model.actuator_name2id('A_THJ0')+1,:3] = np.array([0, -1, 0]) utils.EzPickle.__init__(self) ob = self.reset_model() self.act_mid = np.mean(self.model.actuator_ctrlrange, axis=1) self.act_rng = 0.5*(self.model.actuator_ctrlrange[:,1]-self.model.actuator_ctrlrange[:,0]) self.door_hinge_did = self.model.jnt_dofadr[self.model.joint_name2id('door_hinge')] self.grasp_sid = self.model.site_name2id('S_grasp') self.handle_sid = self.model.site_name2id('S_handle') self.door_bid = self.model.body_name2id('frame')
Example #7
Source File: reacher_env.py From me-trpo with MIT License | 6 votes |
def __init__(self): utils.EzPickle.__init__(self) mujoco_env.MujocoEnv.__init__(self, 'reacher.xml', 2) # def _step(self, a): # # x = self._get_obs()[None] # # assert np.allclose(self.get_body_com("fingertip")[:2], get_fingertips(x)),\ # # str(self.get_body_com("fingertip")) + " "+ str(get_fingertips(x)) # vec = self.get_body_com("fingertip")-self.get_body_com("target") # reward_dist = - np.linalg.norm(vec[:2]) # reward_ctrl = - np.square(a).sum()*0.01 # reward = reward_dist + reward_ctrl # self.do_simulation(a, self.frame_skip) # ob = self._get_obs() # done = False # return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
Example #8
Source File: pick_and_place.py From DRL_DeliveryDuel with MIT License | 6 votes |
def __init__(self, reward_type='sparse'): initial_qpos = { 'robot0:slide0': 0.405, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'table0:slide0': 1.05, 'table0:slide1': 0.4, 'table0:slide2': 0.0, 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], } fetch_env.FetchEnv.__init__( self, 'fetch/pick_and_place.xml', has_object=True, block_gripper=False, n_substeps=20, gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0, obj_range=0.15, target_range=0.15, distance_threshold=0.05, initial_qpos=initial_qpos, reward_type=reward_type) utils.EzPickle.__init__(self)
Example #9
Source File: push.py From DRL_DeliveryDuel with MIT License | 6 votes |
def __init__(self, reward_type='sparse'): initial_qpos = { 'robot0:slide0': 0.405, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'table0:slide0': 1.05, 'table0:slide1': 0.4, 'table0:slide2': 0.0, 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], } fetch_env.FetchEnv.__init__( self, 'fetch/push.xml', has_object=True, block_gripper=True, n_substeps=20, gripper_extra_height=0.0, target_in_the_air=False, target_offset=0.0, obj_range=0.15, target_range=0.15, distance_threshold=0.05, initial_qpos=initial_qpos, reward_type=reward_type) utils.EzPickle.__init__(self)
Example #10
Source File: few_shot_reach_env.py From rl_swiss with MIT License | 6 votes |
def __init__(self, reward_type='sparse'): initial_qpos = { 'robot0:slide0': 0.405, 'robot0:slide1': 0.48, 'robot0:slide2': 0.0, 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], 'object1:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.], } FewShotReachEnv.__init__( self, FEW_SHOT_ENV_XML_PATH, has_object=True, block_gripper=False, n_substeps=20, gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0, obj_range=0.15, target_range=0.0, distance_threshold=0.05, initial_qpos=initial_qpos, reward_type=reward_type, goal_high_prob=1.0, min_goal_extra_height=0.05, max_goal_extra_height=0.05, min_dist_between_objs=0.1, same_color_radius=0.3 ) gym_utils.EzPickle.__init__(self) self._max_episode_steps = 30
Example #11
Source File: state_matching_ant_env.py From rl_swiss with MIT License | 6 votes |
def __init__(self, episode_len=499): # # 1 x 1 x 8 x 2 # self.valid_targets = np.array( # [[[ # [8.0, 0.0], # [0.0, 8.0], # [-8.0, 0.0], # [0.0, -8.0], # ]]] # ) self.timestep = 0.0 self.episode_len = episode_len # self.init_xy = init_pos.copy() xml_path = os.path.join(os.path.dirname(__file__), "assets", 'low_gear_ratio_ant.xml') # xml_path = os.path.join(os.path.dirname(__file__), "assets", 's_maze.xml') MujocoEnv.__init__(self, xml_path, 5) utils.EzPickle.__init__(self)
Example #12
Source File: point_maze_env.py From imitation with MIT License | 6 votes |
def __init__( self, direction=1, maze_length=0.6, sparse_reward=False, no_reward=False, include_vel=False, episode_length=100, ): utils.EzPickle.__init__(self) self.sparse_reward = sparse_reward self.no_reward = no_reward self.include_vel = include_vel self.max_episode_length = episode_length self.direction = direction self.length = maze_length self.episode_length = 0 model = point_mass_maze(direction=self.direction, length=self.length) with model.asfile() as f: mujoco_env.MujocoEnv.__init__(self, f.name, 5)
Example #13
Source File: ant_multi_target.py From rl_swiss with MIT License | 5 votes |
def __init__(self, use_rel_pos_obs=False, terminate_near_target=False): self.terminate_near_target = terminate_near_target self.terminate_radius = 0.5 self.use_rel_pos_obs = use_rel_pos_obs # 1 x 1 x 8 x 2 self.valid_targets = np.array( [[[ # [2.0, 0.0], # # [1.41, 1.41], # [0.0, 2.0], # # [-1.41, 1.41], # [-2.0, 0.0], # # [-1.41, -1.41], # [0.0, -2.0], # # [1.41, -1.41] [4.0, 0.0], [0.0, 4.0], [-4.0, 0.0], [0.0, -4.0], ]]] ) xml_path = os.path.join(os.path.dirname(__file__), "assets", 'low_gear_ratio_ant.xml') MujocoEnv.__init__(self, xml_path, 5) utils.EzPickle.__init__(self)
Example #14
Source File: ant_env.py From inverse_rl with MIT License | 5 votes |
def __init__(self, max_timesteps=1000, disabled=False, gear=150): #mujoco_env.MujocoEnv.__init__(self, 'ant.xml', 5) utils.EzPickle.__init__(self) self.timesteps = 0 self.max_timesteps=max_timesteps if disabled: model = angry_ant_crippled(gear=gear) else: model = ant_env(gear=gear) with model.asfile() as f: mujoco_env.MujocoEnv.__init__(self, f.name, 5)
Example #15
Source File: atari_env.py From ia-course with MIT License | 5 votes |
def __init__(self, game='pong', obs_type='ram', frameskip=(2, 5), repeat_action_probability=0.): """Frameskip should be either a tuple (indicating a random range to choose from, with the top value exclude), or an int.""" utils.EzPickle.__init__(self, game, obs_type, frameskip, repeat_action_probability) assert obs_type in ('ram', 'image') self.game_path = atari_py.get_game_path(game) if not os.path.exists(self.game_path): raise IOError('You asked for game %s but path %s does not exist'%(game, self.game_path)) self._obs_type = obs_type self.frameskip = frameskip self.ale = atari_py.ALEInterface() self.viewer = None # Tune (or disable) ALE's action repeat: # https://github.com/openai/gym/issues/349 assert isinstance(repeat_action_probability, (float, int)), "Invalid repeat_action_probability: {!r}".format(repeat_action_probability) self.ale.setFloat('repeat_action_probability'.encode('utf-8'), repeat_action_probability) self.seed() self._action_set = self.ale.getMinimalActionSet() self.action_space = spaces.Discrete(len(self._action_set)) (screen_width,screen_height) = self.ale.getScreenDims() if self._obs_type == 'ram': self.observation_space = spaces.Box(low=0, high=255, dtype=np.uint8, shape=(128,)) elif self._obs_type == 'image': self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8) else: raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))
Example #16
Source File: reacher.py From ia-course with MIT License | 5 votes |
def __init__(self): utils.EzPickle.__init__(self) mujoco_env.MujocoEnv.__init__(self, 'reacher.xml', 2)
Example #17
Source File: ant_linear_classification.py From rl_swiss with MIT License | 5 votes |
def __init__(self, use_relative_pos=False): self.ACCEPT_RADIUS = 0.5 self.true_label = 0 self.task_hyperplane = np.ones(4) / 2.0 self.first_sample = np.random.uniform(size=4) self.second_sample = np.random.uniform(size=4) self.targets = np.array( [ [1.41, 1.41], [-1.41, 1.41] ] ) self.use_relative_pos = use_relative_pos MetaMujocoEnv.__init__(self, 'low_gear_ratio_ant.xml', 5) utils.EzPickle.__init__(self)
Example #18
Source File: ant_rand_direc_2d.py From rl_swiss with MIT License | 5 votes |
def __init__(self): self.goal_direction = np.array([1.0, 0.0]) # MetaMujocoEnv.__init__(self, 'ant.xml', 5) MetaMujocoEnv.__init__(self, 'low_gear_ratio_ant.xml', 5) # MetaMujocoEnv.__init__(self, 'low_gear_ratio_ant.xml', 5) utils.EzPickle.__init__(self)
Example #19
Source File: humanoid.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'humanoid.xml', 5) utils.EzPickle.__init__(self)
Example #20
Source File: ant_rand_goal_in_8_star_env.py From rl_swiss with MIT License | 5 votes |
def __init__(self): self.goal_pos = np.array([14.1, 14.1]) self.target_distance = 25.0 MetaMujocoEnv.__init__(self, 'low_gear_ratio_ant_8_star.xml', 5) utils.EzPickle.__init__(self)
Example #21
Source File: walker_env.py From me-trpo with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, "walker2d.xml", 4) utils.EzPickle.__init__(self)
Example #22
Source File: thrower.py From ia-course with MIT License | 5 votes |
def __init__(self): utils.EzPickle.__init__(self) self._ball_hit_ground = False self._ball_hit_location = None mujoco_env.MujocoEnv.__init__(self, 'thrower.xml', 5)
Example #23
Source File: striker.py From ia-course with MIT License | 5 votes |
def __init__(self): utils.EzPickle.__init__(self) self._striked = False self._min_strike_dist = np.inf self.strike_threshold = 0.1 mujoco_env.MujocoEnv.__init__(self, 'striker.xml', 5)
Example #24
Source File: swimmer.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'swimmer.xml', 4) utils.EzPickle.__init__(self)
Example #25
Source File: walker2d.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, "walker2d.xml", 4) utils.EzPickle.__init__(self)
Example #26
Source File: pusher.py From ia-course with MIT License | 5 votes |
def __init__(self): utils.EzPickle.__init__(self) mujoco_env.MujocoEnv.__init__(self, 'pusher.xml', 5)
Example #27
Source File: ant.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'ant.xml', 5) utils.EzPickle.__init__(self)
Example #28
Source File: humanoidstandup.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'humanoidstandup.xml', 5) utils.EzPickle.__init__(self)
Example #29
Source File: half_cheetah.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'half_cheetah.xml', 5) utils.EzPickle.__init__(self)
Example #30
Source File: inverted_double_pendulum.py From ia-course with MIT License | 5 votes |
def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'inverted_double_pendulum.xml', 5) utils.EzPickle.__init__(self)