Python solver.Solver() Examples
The following are 30
code examples of solver.Solver().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
solver
, or try the search function
.
Example #1
Source File: autoencoder.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #2
Source File: main.py From dl-uncertainty with MIT License | 6 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=FLAGS.checkpoint) else: print 'Unrecognized mode.'
Example #3
Source File: main.py From dl-uncertainty with MIT License | 6 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=FLAGS.checkpoint) else: print 'Unrecognized mode.'
Example #4
Source File: autoencoder.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #5
Source File: main.py From Res2Net-PoolNet with MIT License | 6 votes |
def main(config): if config.mode == 'train': train_loader = get_loader(config) run = 0 while os.path.exists("%s/run-%d" % (config.save_folder, run)): run += 1 os.mkdir("%s/run-%d" % (config.save_folder, run)) os.mkdir("%s/run-%d/models" % (config.save_folder, run)) config.save_folder = "%s/run-%d" % (config.save_folder, run) train = Solver(train_loader, None, config) train.train() elif config.mode == 'test': config.test_root, config.test_list = get_test_info(config.sal_mode) test_loader = get_loader(config, mode='test') if not os.path.exists(config.test_fold): os.mkdir(config.test_fold) test = Solver(None, test_loader, config) test.test() else: raise IOError("illegal input!!!")
Example #6
Source File: autoencoder.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #7
Source File: main.py From PoolNet with MIT License | 6 votes |
def main(config): if config.mode == 'train': train_loader = get_loader(config) run = 0 while os.path.exists("%s/run-%d" % (config.save_folder, run)): run += 1 os.mkdir("%s/run-%d" % (config.save_folder, run)) os.mkdir("%s/run-%d/models" % (config.save_folder, run)) config.save_folder = "%s/run-%d" % (config.save_folder, run) train = Solver(train_loader, None, config) train.train() elif config.mode == 'test': config.test_root, config.test_list = get_test_info(config.sal_mode) test_loader = get_loader(config, mode='test') if not os.path.exists(config.test_fold): os.mkdir(config.test_fold) test = Solver(None, test_loader, config) test.test() else: raise IOError("illegal input!!!")
Example #8
Source File: main.py From mnist-svhn-transfer with MIT License | 6 votes |
def main(config): svhn_loader, mnist_loader = get_loader(config) solver = Solver(config, svhn_loader, mnist_loader) cudnn.benchmark = True # create directories if not exist if not os.path.exists(config.model_path): os.makedirs(config.model_path) if not os.path.exists(config.sample_path): os.makedirs(config.sample_path) if config.mode == 'train': solver.train() elif config.mode == 'sample': solver.sample()
Example #9
Source File: main.py From domain-transfer-network with MIT License | 6 votes |
def main(_): model = DTN(mode=FLAGS.mode, learning_rate=0.0003) solver = Solver(model, batch_size=100, pretrain_iter=20000, train_iter=2000, sample_iter=100, svhn_dir='svhn', mnist_dir='mnist', model_save_path=FLAGS.model_save_path, sample_save_path=FLAGS.sample_save_path) # create directories if not exist if not tf.gfile.Exists(FLAGS.model_save_path): tf.gfile.MakeDirs(FLAGS.model_save_path) if not tf.gfile.Exists(FLAGS.sample_save_path): tf.gfile.MakeDirs(FLAGS.sample_save_path) if FLAGS.mode == 'pretrain': solver.pretrain() elif FLAGS.mode == 'train': solver.train() else: solver.eval()
Example #10
Source File: autoencoder.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #11
Source File: main.py From minimal-entropy-correlation-alignment with MIT License | 6 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = FLAGS.model_save_path + '/' + FLAGS.method + '/alpha_' + FLAGS.alpha log_dir = 'logs/' + FLAGS.method + '/alpha_' + FLAGS.alpha model = logDcoral(mode=FLAGS.mode, method=FLAGS.method, hidden_size = 64, learning_rate=0.0001, alpha=float(FLAGS.alpha)) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test() elif FLAGS.mode == 'tsne': solver.tsne() else: print 'Unrecognized mode.'
Example #12
Source File: autoencoder.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #13
Source File: autoencoder.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def layerwise_pretrain(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') for i in range(self.N): if i == 0: data_iter_i = data_iter else: X_i = list(model.extract_feature( self.internals[i-1], self.args, self.auxs, data_iter, X.shape[0], self.xpu).values())[0] data_iter_i = mx.io.NDArrayIter({'data': X_i}, batch_size=batch_size, last_batch_handle='roll_over') logging.info('Pre-training layer %d...', i) solver.solve(self.xpu, self.stacks[i], self.args, self.args_grad, self.auxs, data_iter_i, 0, n_iter, {}, False)
Example #14
Source File: run.py From quickNAT_pytorch with MIT License | 5 votes |
def train(train_params, common_params, data_params, net_params): train_data, test_data = load_data(data_params) train_loader = torch.utils.data.DataLoader(train_data, batch_size=train_params['train_batch_size'], shuffle=True, num_workers=4, pin_memory=True) val_loader = torch.utils.data.DataLoader(test_data, batch_size=train_params['val_batch_size'], shuffle=False, num_workers=4, pin_memory=True) if train_params['use_pre_trained']: quicknat_model = torch.load(train_params['pre_trained_path']) else: quicknat_model = QuickNat(net_params) solver = Solver(quicknat_model, device=common_params['device'], num_class=net_params['num_class'], optim_args={"lr": train_params['learning_rate'], "betas": train_params['optim_betas'], "eps": train_params['optim_eps'], "weight_decay": train_params['optim_weight_decay']}, model_name=common_params['model_name'], exp_name=train_params['exp_name'], labels=data_params['labels'], log_nth=train_params['log_nth'], num_epochs=train_params['num_epochs'], lr_scheduler_step_size=train_params['lr_scheduler_step_size'], lr_scheduler_gamma=train_params['lr_scheduler_gamma'], use_last_checkpoint=train_params['use_last_checkpoint'], log_dir=common_params['log_dir'], exp_dir=common_params['exp_dir']) solver.train(train_loader, val_loader) final_model_path = os.path.join(common_params['save_model_dir'], train_params['final_model_file']) quicknat_model.save(final_model_path) print("final model saved @ " + str(final_model_path))
Example #15
Source File: main.py From FactorVAE with MIT License | 5 votes |
def main(args): net = Solver(args) net.train()
Example #16
Source File: main.py From stargan with MIT License | 5 votes |
def main(config): # For fast training. cudnn.benchmark = True # Create directories if not exist. if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_save_dir): os.makedirs(config.model_save_dir) if not os.path.exists(config.sample_dir): os.makedirs(config.sample_dir) if not os.path.exists(config.result_dir): os.makedirs(config.result_dir) # Data loader. celeba_loader = None rafd_loader = None if config.dataset in ['CelebA', 'Both']: celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) if config.dataset in ['RaFD', 'Both']: rafd_loader = get_loader(config.rafd_image_dir, None, None, config.rafd_crop_size, config.image_size, config.batch_size, 'RaFD', config.mode, config.num_workers) # Solver for training and testing StarGAN. solver = Solver(celeba_loader, rafd_loader, config) if config.mode == 'train': if config.dataset in ['CelebA', 'RaFD']: solver.train() elif config.dataset in ['Both']: solver.train_multi() elif config.mode == 'test': if config.dataset in ['CelebA', 'RaFD']: solver.test() elif config.dataset in ['Both']: solver.test_multi()
Example #17
Source File: train.py From Conv-TasNet with MIT License | 5 votes |
def main(args): # Construct Solver # data tr_dataset = AudioDataset(args.train_dir, args.batch_size, sample_rate=args.sample_rate, segment=args.segment) cv_dataset = AudioDataset(args.valid_dir, batch_size=1, # 1 -> use less GPU memory to do cv sample_rate=args.sample_rate, segment=-1, cv_maxlen=args.cv_maxlen) # -1 -> use full audio tr_loader = AudioDataLoader(tr_dataset, batch_size=1, shuffle=args.shuffle, num_workers=args.num_workers) cv_loader = AudioDataLoader(cv_dataset, batch_size=1, num_workers=0) data = {'tr_loader': tr_loader, 'cv_loader': cv_loader} # model model = ConvTasNet(args.N, args.L, args.B, args.H, args.P, args.X, args.R, args.C, norm_type=args.norm_type, causal=args.causal, mask_nonlinear=args.mask_nonlinear) print(model) if args.use_cuda: model = torch.nn.DataParallel(model) model.cuda() # optimizer if args.optimizer == 'sgd': optimizier = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.l2) elif args.optimizer == 'adam': optimizier = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) else: print("Not support optimizer") return # solver solver = Solver(data, model, optimizier, args) solver.train()
Example #18
Source File: train.py From CARN-pytorch with MIT License | 5 votes |
def main(cfg): # dynamic import using --model argument net = importlib.import_module("model.{}".format(cfg.model)).Net print(json.dumps(vars(cfg), indent=4, sort_keys=True)) solver = Solver(net, cfg) solver.fit()
Example #19
Source File: main.py From ultra-thin-PRM with MIT License | 5 votes |
def main(args): with open("config.yml", 'r') as stream: try: config = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) train_trans = image_transform(**config['train_transform']) test_trans = image_transform(**config['test_transform']) config['dataset'].update({'transform': train_trans, 'target_transform': None}) dataset = pascal_voc_classification(**config['dataset']) config['data_loaders']['dataset'] = dataset data_loader = fetch_voc(**config['data_loaders']) train_logger = SummaryWriter(log_dir = os.path.join(config['log'], 'train'), comment = 'training') solver = Solver(config) if args.train: solver.train(data_loader, train_logger) if args.run_demo: # Load demo images and pre-computed object proposals # change the idx to test different samples idx = 1 raw_img = PIL.Image.open('./data/sample%d.jpg' % idx).convert('RGB') input_var = test_trans(raw_img).unsqueeze(0).cuda().requires_grad_() with open('./data/sample%d.json' % idx, 'r') as f: proposals = list(map(rle_decode, json.load(f))) solver.inference(input_var, raw_img, 19, proposals=proposals)
Example #20
Source File: main.py From Text2Colors with MIT License | 5 votes |
def main(args): # Create directory if it doesn't exist. if not os.path.exists(args.text2pal_dir): os.makedirs(args.text2pal_dir) if not os.path.exists(args.pal2color_dir): os.makedirs(args.pal2color_dir) if not os.path.exists(args.train_sample_dir): os.makedirs(args.train_sample_dir) if not os.path.exists(os.path.join(args.test_sample_dir, args.mode)): os.makedirs(os.path.join(args.test_sample_dir, args.mode)) # Solver for training and testing Text2Colors. solver = Solver(args) # Train or test. if args.mode == 'train_TPN': solver.train_TPN() elif args.mode == 'train_PCN': solver.train_PCN() elif args.mode == 'test_TPN': solver.test_TPN() elif args.mode == 'test_text2colors': solver.test_text2colors()
Example #21
Source File: train_model.py From TuSimple-DUC with Apache License 2.0 | 5 votes |
def train_end2end(): config = ConfigParser.RawConfigParser() config_path = sys.argv[1] config.read(config_path) model = Solver(config) model.fit()
Example #22
Source File: autoencoder.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def finetune(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') logging.info('Fine tuning...') solver.solve(self.xpu, self.loss, self.args, self.args_grad, self.auxs, data_iter, 0, n_iter, {}, False)
Example #23
Source File: main.py From SHN-based-2D-face-alignment with MIT License | 5 votes |
def main(config): # For fast training. cudnn.benchmark = True # Create directories if not exist. if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_save_dir): os.makedirs(config.model_save_dir) imgdirs_train = ['data/afw/', 'data/helen/trainset/', 'data/lfpw/trainset/'] imgdirs_test_commomset = ['data/helen/testset/','data/lfpw/testset/'] # Dataset and Dataloader if config.phase == 'test': trainset=None train_loader = None else: trainset = Dataset(imgdirs_train, config.phase, 'train', config.rotFactor, config.res, config.gamma) train_loader = data.DataLoader(trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True) testset = Dataset(imgdirs_test_commomset, 'test', config.attr, config.rotFactor, config.res, config.gamma) test_loader = data.DataLoader(testset, batch_size=config.batch_size, num_workers=config.num_workers, pin_memory=True) # Solver for training and testing. solver = Solver(train_loader, test_loader, config) if config.phase == 'train': solver.train() else: solver.load_state_dict(config.best_model) solver.test()
Example #24
Source File: main.py From dl-uncertainty with MIT License | 5 votes |
def main(_): with tf.device(FLAGS.device): model_save_path = 'model/'+FLAGS.model_save_path # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) log_dir = 'logs/'+ model_save_path if FLAGS.mode == 'test': checkpoint = model_save_path+'/model' model = Model(learning_rate=0.0003, mode=FLAGS.mode) solver = Solver(model, model_save_path=model_save_path, log_dir=log_dir, training_size=int(FLAGS.training_size) ) # create directory if it does not exist if not tf.gfile.Exists(model_save_path): tf.gfile.MakeDirs(model_save_path) if FLAGS.mode == 'train': solver.train() elif FLAGS.mode == 'test': solver.test(checkpoint=checkpoint) else: print 'Unrecognized mode.'
Example #25
Source File: autoencoder.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def finetune(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') logging.info('Fine tuning...') solver.solve(self.xpu, self.loss, self.args, self.args_grad, self.auxs, data_iter, 0, n_iter, {}, False)
Example #26
Source File: main.py From Beta-VAE with MIT License | 5 votes |
def main(args): seed = args.seed torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) net = Solver(args) if args.train: net.train() else: net.traverse()
Example #27
Source File: train_test.py From person-reid-lib with MIT License | 5 votes |
def main(): cur_dir = file_abs_path(__file__) manager = Manager(cur_dir, seed=None, mode='Train') logger = manager.logger ParseArgs(logger) if manager.seed is not None: random.seed(manager.seed) np.random.seed(manager.seed) torch.manual_seed(manager.seed) # ['iLIDS-VID', 'PRID-2011', 'LPW', 'MARS', 'VIPeR', 'Market1501', 'CUHK03', 'CUHK01', 'DukeMTMCreID', 'GRID', 'DukeMTMC-VideoReID'] # 0 1 2 3 4 5 6 7 8 9 10 manager.set_dataset(0) perf_box = {} repeat_times = 10 for task_i in range(repeat_times): manager.split_id = int(task_i) task = Solver(manager) train_test_time = timer_lite(task.run) perf_box[str(task_i)] = task.perf_box manager.store_performance(perf_box) logger.info('-----------Total time------------') logger.info('Split ID:' + str(task_i) + ' ' + str(train_test_time)) logger.info('---------------------------------') compute_rank(perf_box, logger)
Example #28
Source File: train_test.py From person-reid-lib with MIT License | 5 votes |
def main(): cur_dir = file_abs_path(__file__) manager = Manager(cur_dir, seed=None, mode='Train') logger = manager.logger ParseArgs(logger) if manager.seed is not None: random.seed(manager.seed) np.random.seed(manager.seed) torch.manual_seed(manager.seed) # ['iLIDS-VID', 'PRID-2011', 'LPW', 'MARS', 'VIPeR', 'Market1501', 'CUHK03', 'CUHK01', 'DukeMTMCreID', 'GRID', 'DukeMTMC-VideoReID'] # 0 1 2 3 4 5 6 7 8 9 10 manager.set_dataset(4) perf_box = {} repeat_times = 10 for task_i in range(repeat_times): manager.split_id = int(task_i) task = Solver(manager) train_test_time = timer_lite(task.run) perf_box[str(task_i)] = task.perf_box manager.store_performance(perf_box) logger.info('-----------Total time------------') logger.info('Split ID:' + str(task_i) + ' ' + str(train_test_time)) logger.info('---------------------------------') compute_rank(perf_box, logger)
Example #29
Source File: autoencoder.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def finetune(self, X, batch_size, n_iter, optimizer, l_rate, decay, lr_scheduler=None, print_every=1000): def l2_norm(label, pred): return np.mean(np.square(label-pred))/2.0 solver = Solver(optimizer, momentum=0.9, wd=decay, learning_rate=l_rate, lr_scheduler=lr_scheduler) solver.set_metric(mx.metric.CustomMetric(l2_norm)) solver.set_monitor(Monitor(print_every)) data_iter = mx.io.NDArrayIter({'data': X}, batch_size=batch_size, shuffle=True, last_batch_handle='roll_over') logging.info('Fine tuning...') solver.solve(self.xpu, self.loss, self.args, self.args_grad, self.auxs, data_iter, 0, n_iter, {}, False)
Example #30
Source File: main.py From MCD_DA with MIT License | 4 votes |
def main(): # if not args.one_step: solver = Solver(args, source=args.source, target=args.target, learning_rate=args.lr, batch_size=args.batch_size, optimizer=args.optimizer, num_k=args.num_k, all_use=args.all_use, checkpoint_dir=args.checkpoint_dir, save_epoch=args.save_epoch) record_num = 0 if args.source == 'usps' or args.target == 'usps': record_train = 'record/%s_%s_k_%s_alluse_%s_onestep_%s_%s.txt' % ( args.source, args.target, args.num_k, args.all_use, args.one_step, record_num) record_test = 'record/%s_%s_k_%s_alluse_%s_onestep_%s_%s_test.txt' % ( args.source, args.target, args.num_k, args.all_use, args.one_step, record_num) while os.path.exists(record_train): record_num += 1 record_train = 'record/%s_%s_k_%s_alluse_%s_onestep_%s_%s.txt' % ( args.source, args.target, args.num_k, args.all_use, args.one_step, record_num) record_test = 'record/%s_%s_k_%s_alluse_%s_onestep_%s_%s_test.txt' % ( args.source, args.target, args.num_k, args.all_use, args.one_step, record_num) else: record_train = 'record/%s_%s_k_%s_onestep_%s_%s.txt' % ( args.source, args.target, args.num_k, args.one_step, record_num) record_test = 'record/%s_%s_k_%s_onestep_%s_%s_test.txt' % ( args.source, args.target, args.num_k, args.one_step, record_num) while os.path.exists(record_train): record_num += 1 record_train = 'record/%s_%s_k_%s_onestep_%s_%s.txt' % ( args.source, args.target, args.num_k, args.one_step, record_num) record_test = 'record/%s_%s_k_%s_onestep_%s_%s_test.txt' % ( args.source, args.target, args.num_k, args.one_step, record_num) if not os.path.exists(args.checkpoint_dir): os.mkdir(args.checkpoint_dir) if not os.path.exists('record'): os.mkdir('record') if args.eval_only: solver.test(0) else: count = 0 for t in xrange(args.max_epoch): if not args.one_step: num = solver.train(t, record_file=record_train) else: num = solver.train_onestep(t, record_file=record_train) count += num if t % 1 == 0: solver.test(t, record_file=record_test, save_model=args.save_model) if count >= 20000: break