Python tensorflow.contrib.layers.l2_regularizer() Examples
The following are 30
code examples of tensorflow.contrib.layers.l2_regularizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.layers
, or try the search function
.
Example #1
Source File: medgan.py From medgan with BSD 3-Clause "New" or "Revised" License | 6 votes |
def getDiscriminatorResults(self, x_input, keepRate, reuse=False): batchSize = tf.shape(x_input)[0] inputMean = tf.reshape(tf.tile(tf.reduce_mean(x_input,0), [batchSize]), (batchSize, self.inputDim)) tempVec = tf.concat([x_input, inputMean], 1) tempDim = self.inputDim * 2 with tf.variable_scope('discriminator', reuse=reuse, regularizer=l2_regularizer(self.l2scale)): for i, discDim in enumerate(self.discriminatorDims[:-1]): W = tf.get_variable('W_'+str(i), shape=[tempDim, discDim]) b = tf.get_variable('b_'+str(i), shape=[discDim]) h = self.discriminatorActivation(tf.add(tf.matmul(tempVec,W),b)) h = tf.nn.dropout(h, keepRate) tempVec = h tempDim = discDim W = tf.get_variable('W', shape=[tempDim, 1]) b = tf.get_variable('b', shape=[1]) y_hat = tf.squeeze(tf.nn.sigmoid(tf.add(tf.matmul(tempVec, W), b))) return y_hat
Example #2
Source File: mru.py From SketchySceneColorization with MIT License | 6 votes |
def embed_labels(inputs, num_classes, output_dim, sn, weight_decay_rate=1e-5, reuse=None, scope=None): # TODO move regularizer definitions to model weights_regularizer = ly.l2_regularizer(weight_decay_rate) with tf.variable_scope(scope, 'embedding', [inputs], reuse=reuse) as sc: inputs = tf.convert_to_tensor(inputs) weights = tf.get_variable(name="weights", shape=(num_classes, output_dim), initializer=init_ops.random_normal_initializer) # Spectral Normalization if sn: weights = spectral_normed_weight(weights, num_iters=1, update_collection=Config.SPECTRAL_NORM_UPDATE_OPS) embed_out = tf.nn.embedding_lookup(weights, inputs) return embed_out
Example #3
Source File: film_resnet_model.py From tensor2robot with Apache License 2.0 | 6 votes |
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, weight_decay): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) if weight_decay is not None: weight_decay = contrib_layers.l2_regularizer(weight_decay) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=tf.variance_scaling_initializer(), kernel_regularizer=weight_decay, data_format=data_format)
Example #4
Source File: hybrid_model.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): self.device_assigner = ( device_assigner or tensor_forest.RandomForestDeviceAssigner()) self.params = params self.optimizer = optimizer_class(self.params.learning_rate) self.is_regression = params.regression self.regularizer = None if params.regularization == "l1": self.regularizer = layers.l1_regularizer( self.params.regularization_strength) elif params.regularization == "l2": self.regularizer = layers.l2_regularizer( self.params.regularization_strength)
Example #5
Source File: build_resnet.py From tensorflow-litterbox with Apache License 2.0 | 6 votes |
def resnet_arg_scope( weight_decay=0.0001, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True, ): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, } l2_regularizer = layers.l2_regularizer(weight_decay) arg_scope_layers = arg_scope( [layers.conv2d, my_layers.preact_conv2d, layers.fully_connected], weights_initializer=layers.variance_scaling_initializer(), weights_regularizer=l2_regularizer, activation_fn=tf.nn.relu) arg_scope_conv = arg_scope( [layers.conv2d, my_layers.preact_conv2d], normalizer_fn=layers.batch_norm, normalizer_params=batch_norm_params) with arg_scope_layers, arg_scope_conv as arg_sc: return arg_sc
Example #6
Source File: hybrid_model.py From lambda-packs with MIT License | 6 votes |
def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): self.device_assigner = ( device_assigner or framework_variables.VariableDeviceChooser()) self.params = params self.optimizer = optimizer_class(self.params.learning_rate) self.is_regression = params.regression self.regularizer = None if params.regularization == "l1": self.regularizer = layers.l1_regularizer( self.params.regularization_strength) elif params.regularization == "l2": self.regularizer = layers.l2_regularizer( self.params.regularization_strength)
Example #7
Source File: hybrid_model.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): self.device_assigner = ( device_assigner or tensor_forest.RandomForestDeviceAssigner()) self.params = params self.optimizer = optimizer_class(self.params.learning_rate) self.is_regression = params.regression self.regularizer = None if params.regularization == "l1": self.regularizer = layers.l1_regularizer( self.params.regularization_strength) elif params.regularization == "l2": self.regularizer = layers.l2_regularizer( self.params.regularization_strength)
Example #8
Source File: layers.py From tensornets with MIT License | 6 votes |
def darkconv(*args, **kwargs): scope = kwargs.pop('scope', None) onlyconv = kwargs.pop('onlyconv', False) with tf.variable_scope(scope): conv_kwargs = { 'padding': 'SAME', 'activation_fn': None, 'weights_initializer': variance_scaling_initializer(1.53846), 'weights_regularizer': l2(5e-4), 'biases_initializer': None, 'scope': 'conv'} if onlyconv: conv_kwargs.pop('biases_initializer') with arg_scope([conv2d], **conv_kwargs): x = conv2d(*args, **kwargs) if onlyconv: return x x = batch_norm(x, decay=0.99, center=False, scale=True, epsilon=1e-5, scope='bn') x = bias_add(x, scope='bias') x = leaky_relu(x, alpha=0.1, name='lrelu') return x
Example #9
Source File: resnet.py From TF_Face_Toolbox with Apache License 2.0 | 6 votes |
def forward(self, images, num_classes=None, is_training=True): assert num_classes is not None, 'num_classes must be given when is_training=True' # Forward features, _ = self.backbone(images, is_training=is_training) # Logits with tf.variable_scope('classifier'): features_drop = layers.dropout(features, keep_prob=0.5, is_training=is_training) logit = layers.fully_connected(features_drop, num_classes, activation_fn=None, weights_initializer=tf.random_normal_initializer(stddev=0.001), weights_regularizer=layers.l2_regularizer(self.weight_decay), biases_initializer=None, scope='fc_classifier') logits = {} logits['logits'] = logit return logits
Example #10
Source File: sphere.py From TF_Face_Toolbox with Apache License 2.0 | 6 votes |
def forward(self, images, num_classes=None, is_training=True): if is_training: assert num_classes is not None, 'num_classes must be given when is_training=True' # Forward features = self.backbone(images, is_training=is_training) # Logits with tf.variable_scope('classifier'): print(features) logit = layers.fully_connected(features, num_classes, activation_fn=None, weights_initializer=tf.random_normal_initializer(stddev=0.001), weights_regularizer=layers.l2_regularizer(self.weight_decay), biases_initializer=None, scope='fc_classifier') print(num_classes) logits = {} logits['logits'] = logit return logits else: features = self.backbone(images, is_training=is_training) features_flipped = self.backbone(tf.reverse(images, axis=[2]), is_training=is_training, reuse=True) features = (features+features_flipped)/2 return features
Example #11
Source File: model_deploy_test.py From aster with MIT License | 6 votes |
def testNoSummariesOnGPU(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = layers.l2_regularizer(0.001) layers.fully_connected(inputs, 30, weights_regularizer=reg) model = model_deploy.deploy( deploy_config, ModelFn, optimizer=tf.train.GradientDescentOptimizer(1.0)) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device)
Example #12
Source File: model_deploy_test.py From aster with MIT License | 6 votes |
def testNoSummariesOnGPUForEvals(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = layers.l2_regularizer(0.001) layers.fully_connected(inputs, 30, weights_regularizer=reg) # No optimizer here, it's an eval. model = model_deploy.deploy(deploy_config, ModelFn) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device)
Example #13
Source File: hyperparams_builder.py From aster with MIT License | 6 votes |
def _build_regularizer(regularizer): """Builds a regularizer from config. Args: regularizer: hyperparams_pb2.Hyperparams.regularizer proto. Returns: regularizer. Raises: ValueError: On unknown regularizer. """ regularizer_oneof = regularizer.WhichOneof('regularizer_oneof') if regularizer_oneof == 'l1_regularizer': return layers.l1_regularizer(scale=float(regularizer.l1_regularizer.weight)) if regularizer_oneof == 'l2_regularizer': return layers.l2_regularizer(scale=float(regularizer.l2_regularizer.weight)) raise ValueError('Unknown regularizer function: {}'.format(regularizer_oneof))
Example #14
Source File: humanEncoder_ablation.py From Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics with MIT License | 6 votes |
def forward(self, dec_in, reuse=False, trainable=True, is_training=True): with tf.variable_scope(self.name_scope) as vs: if (reuse): vs.reuse_variables() lrelu = VAE.lrelu dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training) h0 = tcl.fully_connected(dec_in_enc, 512, scope="fc3", activation_fn=lrelu, weights_regularizer=tcl.l2_regularizer(self.re_term)) h0 = tcl.dropout(h0, 0.5, is_training=is_training) h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None, weights_regularizer=tcl.l2_regularizer(self.re_term), ) h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3) return h0
Example #15
Source File: humanEncoder_ablation.py From Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics with MIT License | 6 votes |
def forward(self, data_input, input_class, reuse=False, trainable=True, is_training=True): with tf.variable_scope(self.name_scope) as vs: if (reuse): vs.reuse_variables() dec_in_enc = self.encoder.forward(data_input, reuse=reuse, trainable=trainable, is_training=is_training, with_batchnorm=False) dec_in_enc = tf.nn.relu(dec_in_enc) y = tf.concat([dec_in_enc, input_class], 1) h0 = tcl.fully_connected(y, self.nfilters * 8, scope="fc1", weights_regularizer=tcl.l2_regularizer(self.re_term)) return tcl.fully_connected(h0, 1, activation_fn=None, weights_regularizer=tcl.l2_regularizer(self.re_term))
Example #16
Source File: medgan.py From medgan with BSD 3-Clause "New" or "Revised" License | 6 votes |
def buildGeneratorTest(self, x_input, bn_train): tempVec = x_input tempDim = self.randomDim with tf.variable_scope('generator', regularizer=l2_regularizer(self.l2scale)): for i, genDim in enumerate(self.generatorDims[:-1]): W = tf.get_variable('W_'+str(i), shape=[tempDim, genDim]) h = tf.matmul(tempVec,W) h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None, trainable=False) h3 = self.generatorActivation(h2) tempVec = h3 + tempVec tempDim = genDim W = tf.get_variable('W'+str(i), shape=[tempDim, self.generatorDims[-1]]) h = tf.matmul(tempVec,W) h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None, trainable=False) if self.dataType == 'binary': h3 = tf.nn.tanh(h2) else: h3 = tf.nn.relu(h2) output = h3 + tempVec return output
Example #17
Source File: medgan.py From medgan with BSD 3-Clause "New" or "Revised" License | 6 votes |
def buildGenerator(self, x_input, bn_train): tempVec = x_input tempDim = self.randomDim with tf.variable_scope('generator', regularizer=l2_regularizer(self.l2scale)): for i, genDim in enumerate(self.generatorDims[:-1]): W = tf.get_variable('W_'+str(i), shape=[tempDim, genDim]) h = tf.matmul(tempVec,W) h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None) h3 = self.generatorActivation(h2) tempVec = h3 + tempVec tempDim = genDim W = tf.get_variable('W'+str(i), shape=[tempDim, self.generatorDims[-1]]) h = tf.matmul(tempVec,W) h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None) if self.dataType == 'binary': h3 = tf.nn.tanh(h2) else: h3 = tf.nn.relu(h2) output = h3 + tempVec return output
Example #18
Source File: hybrid_model.py From keras-lambda with MIT License | 6 votes |
def __init__(self, params, device_assigner=None, optimizer_class=adagrad.AdagradOptimizer, **kwargs): self.device_assigner = ( device_assigner or tensor_forest.RandomForestDeviceAssigner()) self.params = params self.optimizer = optimizer_class(self.params.learning_rate) self.is_regression = params.regression self.regularizer = None if params.regularization == "l1": self.regularizer = layers.l1_regularizer( self.params.regularization_strength) elif params.regularization == "l2": self.regularizer = layers.l2_regularizer( self.params.regularization_strength)
Example #19
Source File: model_deploy_test.py From DirectML with MIT License | 6 votes |
def testNoSummariesOnGPUForEvals(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = contrib_layers.l2_regularizer(0.001) contrib_layers.fully_connected(inputs, 30, weights_regularizer=reg) # No optimizer here, it's an eval. model = model_deploy.deploy(deploy_config, ModelFn) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device)
Example #20
Source File: model_deploy_test.py From DirectML with MIT License | 6 votes |
def testNoSummariesOnGPU(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = contrib_layers.l2_regularizer(0.001) contrib_layers.fully_connected(inputs, 30, weights_regularizer=reg) model = model_deploy.deploy( deploy_config, ModelFn, optimizer=tf.train.GradientDescentOptimizer(1.0)) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device)
Example #21
Source File: nas_network.py From models with Apache License 2.0 | 6 votes |
def nas_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, sync_batch_norm_method='None'): """Default arg scope for the NAS models.""" batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, } batch_norm = utils.get_batch_norm_fn(sync_batch_norm_method) weights_regularizer = contrib_layers.l2_regularizer(weight_decay) weights_initializer = contrib_layers.variance_scaling_initializer( factor=1 / 3.0, mode='FAN_IN', uniform=True) with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([batch_norm], **batch_norm_params) as sc: return sc
Example #22
Source File: MultiVae_Dae.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 6 votes |
def build_graph(self): self.construct_weights() saver, logits = self.forward_pass() log_softmax_var = tf.nn.log_softmax(logits) # per-user average negative log-likelihood neg_ll = -tf.reduce_mean(tf.reduce_sum( log_softmax_var * self.input_ph, axis=1)) # apply regularization to weights reg = l2_regularizer(self.lam) reg_var = apply_regularization(reg, self.weights) # tensorflow l2 regularization multiply 0.5 to the l2 norm # multiply 2 so that it is back in the same scale loss = neg_ll + 2 * reg_var train_op = tf.train.AdamOptimizer(self.lr).minimize(loss) # add summary statistics tf.summary.scalar('negative_multi_ll', neg_ll) tf.summary.scalar('loss', loss) merged = tf.summary.merge_all() return saver, logits, loss, train_op, merged
Example #23
Source File: modules.py From squad-transformer with Apache License 2.0 | 6 votes |
def build_graph(self, q, k, v, seq_len, mask, scope="MultiHeadAttn", reuse=None): with tf.variable_scope(scope, reuse=reuse): # Project each of q, k, v linearly q, k, v = self._project(q, k, v, reuse=reuse) # Split each of q, k, v to prepare for scaled dot product in parallel q, k, v = self._split(q, k, v, seq_len) # Perform scaled dot-product attention on q, k, v sdp_attn = ScaledDotProductAttn() attn_outputs = sdp_attn.build_graph(q, k, v, mask) # Merge the outputs of each head attn_outputs = self._concat(attn_outputs, seq_len) # Linear transform to project back to model dimension attn_outputs = tf_layers.fully_connected(attn_outputs, self.d_model, biases_initializer=None, activation_fn=None, weights_regularizer=tf_layers.l2_regularizer(scale=self.l2_lambda), scope="OutputTransform", reuse=reuse) return attn_outputs
Example #24
Source File: modules.py From squad-transformer with Apache License 2.0 | 6 votes |
def _project(self, q, k, v, scope="Linearity", reuse=None): """Project queries, keys, values with a linear layer. Note: We project the inputs for q, k, v *before* splitting to prepare inputs for each head. This differs from the order in "Attention Is All You Need," but is functionally equivalent. """ def _project_one(x, d, inner_scope): return tf_layers.fully_connected(x, d, activation_fn=None, biases_initializer=None, weights_regularizer=tf_layers.l2_regularizer(scale=self.l2_lambda), scope=inner_scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): q_projected = _project_one(q, self.d_model, "q") k_projected = _project_one(k, self.d_model, "k") v_projected = _project_one(v, self.d_model, "v") return q_projected, k_projected, v_projected
Example #25
Source File: humanEncoder_cmu.py From Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics with MIT License | 6 votes |
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True): with tf.variable_scope(self.name_scope) as vs: if (reuse): vs.reuse_variables() lrelu = VAE.lrelu dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training) y = tf.concat([decoder_hidden, dec_in_enc], 1) h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu, weights_regularizer=tcl.l2_regularizer(self.re_term)) h0 = tcl.dropout(h0, 0.5, is_training=is_training) h0 = tcl.fully_connected(h0, 70, scope="fc4", activation_fn=None, weights_regularizer=tcl.l2_regularizer(self.re_term), ) h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3) return h0
Example #26
Source File: humanEncoder.py From Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics with MIT License | 6 votes |
def forward(self, decoder_hidden, dec_in, decoder_category, reuse=False, trainable=True, is_training=True): with tf.variable_scope(self.name_scope) as vs: if(reuse): vs.reuse_variables() lrelu = VAE.lrelu dec_in_enc = self.encoder.forward(dec_in, reuse=reuse, trainable=trainable, is_training=is_training) y = tf.concat([decoder_hidden, dec_in_enc], 1) h0 = tcl.fully_connected(y, 512, scope="fc3", activation_fn=lrelu, weights_regularizer=tcl.l2_regularizer(self.re_term)) h0 = tcl.dropout(h0, 0.5, is_training=is_training) h0 = tcl.fully_connected(h0, 54, scope="fc4", activation_fn=None, weights_regularizer=tcl.l2_regularizer(self.re_term),) h0 = tf.expand_dims(tf.expand_dims(h0, 1), 3) return h0
Example #27
Source File: conv2d_ws_test.py From models with Apache License 2.0 | 5 votes |
def testReuseConvWithWD(self): height, width = 7, 9 with self.cached_session(): images = tf.random_uniform((5, height, width, 3), seed=1) weight_decay = contrib_layers.l2_regularizer(0.01) with contrib_framework.arg_scope([conv2d_ws.conv2d], weights_regularizer=weight_decay): conv2d_ws.conv2d(images, 32, [3, 3], scope='conv1') self.assertEqual(len(contrib_framework.get_variables()), 2) self.assertEqual( len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)), 1) conv2d_ws.conv2d(images, 32, [3, 3], scope='conv1', reuse=True) self.assertEqual(len(contrib_framework.get_variables()), 2) self.assertEqual( len(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)), 1)
Example #28
Source File: utils.py From s4l with Apache License 2.0 | 5 votes |
def linear(inputs, num_outputs, name, reuse=tf.AUTO_REUSE, weight_decay="flag"): """A linear layer on the inputs.""" if weight_decay == "flag": weight_decay = flags.FLAGS.weight_decay kernel_regularizer = l2_regularizer(scale=weight_decay) logits = tf.layers.conv2d( inputs, filters=num_outputs, kernel_size=1, kernel_regularizer=kernel_regularizer, name=name, reuse=reuse) return tf.squeeze(logits, [1, 2])
Example #29
Source File: MultiVae_Dae.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def build_graph(self): self._construct_weights() saver, logits, KL = self.forward_pass() log_softmax_var = tf.nn.log_softmax(logits) neg_ll = -tf.reduce_mean(tf.reduce_sum( log_softmax_var * self.input_ph, axis=-1)) # apply regularization to weights reg = l2_regularizer(self.lam) reg_var = apply_regularization(reg, self.weights_q + self.weights_p) # tensorflow l2 regularization multiply 0.5 to the l2 norm # multiply 2 so that it is back in the same scale neg_ELBO = neg_ll + self.anneal_ph * KL + 2 * reg_var train_op = tf.train.AdamOptimizer(self.lr).minimize(neg_ELBO) # add summary statistics tf.summary.scalar('negative_multi_ll', neg_ll) tf.summary.scalar('KL', KL) tf.summary.scalar('neg_ELBO_train', neg_ELBO) merged = tf.summary.merge_all() return saver, logits, neg_ELBO, train_op, merged
Example #30
Source File: off.py From Optical-Flow-Guided-Feature with MIT License | 5 votes |
def off_unit_first(feature_t0, feature_t1): with tf.variable_scope('off_unit_first', values=[feature_t0, feature_t1]): # feature_t0 = batch_norm(feature_t0) # feature_t0 = tf.nn.relu(feature_t0) feature_t0 = conv2d(feature_t0, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t0') # feature_t1 = batch_norm(feature_t1) # feature_t1 = tf.nn.relu(feature_t1) feature_t1 = conv2d(feature_t1, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t1') ft = tf.subtract(feature_t0, feature_t1) fx, fy = sobel(feature_t0) return tf.concat( [ fx, fy, ft ], axis=3 )