Python cifar10_input.IMAGE_SIZE Examples
The following are 30
code examples of cifar10_input.IMAGE_SIZE().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cifar10_input
, or try the search function
.
Example #1
Source File: cifar10.py From object_detection_with_tensorflow with MIT License | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #2
Source File: cifar10.py From DOTA_models with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #3
Source File: cifar10.py From uai-sdk with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #4
Source File: cifar10.py From keras_experiments with The Unlicense | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #5
Source File: cifar10.py From keras_experiments with The Unlicense | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #6
Source File: cifar10.py From hands-detection with MIT License | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #7
Source File: cifar10.py From hands-detection with MIT License | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #8
Source File: cifar10.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #9
Source File: cifar10.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #10
Source File: cifar10.py From pathnet with MIT License | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #11
Source File: cifar10.py From pathnet with MIT License | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #12
Source File: cifar10.py From uai-sdk with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #13
Source File: cifar10.py From object_detection_with_tensorflow with MIT License | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #14
Source File: cifar10.py From TensorFlow-HelloWorld with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #15
Source File: cifar10.py From TensorFlow-HelloWorld with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #16
Source File: cifar10.py From TensorFlow-HelloWorld with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #17
Source File: cifar10.py From TensorFlow-HelloWorld with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #18
Source File: cifar10.py From HumanRecognition with MIT License | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #19
Source File: cifar10.py From HumanRecognition with MIT License | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #20
Source File: cifar10.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #21
Source File: cifar10.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #22
Source File: cifar10.py From visual-interaction-networks_tensorflow with MIT License | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #23
Source File: cifar10.py From DOTA_models with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #24
Source File: cifar10.py From ml with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'eval') return cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size)
Example #25
Source File: cifar10.py From ml with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') return cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size)
Example #26
Source File: cifar10.py From yolo_v2 with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #27
Source File: cifar10.py From yolo_v2 with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #28
Source File: cifar10.py From PaddlePaddle_code with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #29
Source File: cifar10.py From PaddlePaddle_code with Apache License 2.0 | 6 votes |
def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels
Example #30
Source File: cifar10.py From Gun-Detector with Apache License 2.0 | 6 votes |
def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. Raises: ValueError: If no data_dir """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin') images, labels = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=FLAGS.batch_size) if FLAGS.use_fp16: images = tf.cast(images, tf.float16) labels = tf.cast(labels, tf.float16) return images, labels