Python PIL.ImageOps.expand() Examples

The following are 30 code examples of PIL.ImageOps.expand(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module PIL.ImageOps , or try the search function .
Example #1
Source File: joint_transforms.py    From cross-season-segmentation with MIT License 7 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize(
                (tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)
                        ), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #2
Source File: ppm_utils.py    From avocado-vt with GNU General Public License v2.0 7 votes vote down vote up
def add_timestamp(image, timestamp, margin=2):
    """
    Return an image object with timestamp bar added at the bottom.

    param image: pillow image object
    param timestamp: timestamp in seconds since the Epoch
    param margin: timestamp margin, default is 2
    """
    width, height = image.size
    font = ImageFont.load_default()
    watermark = time.strftime('%c', time.localtime(timestamp))
    # bar height = text height + top margin + bottom margin
    bar_height = font.getsize(watermark)[1] + 2 * margin

    # place bar at the bottom
    new_image = ImageOps.expand(image, border=(0, 0, 0, bar_height),
                                fill='lightgrey')
    draw = ImageDraw.Draw(new_image)
    # place timestamp at the left side of the bar
    x, y = margin, height + margin
    draw.text((x, y), watermark, font=font, fill='black')
    return new_image 
Example #3
Source File: augmentations.py    From pytorch-semseg with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return (img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST))

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return (img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))) 
Example #4
Source File: joint_transforms.py    From pytorch-semantic-segmentation with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #5
Source File: augmentations.py    From PLARD with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #6
Source File: data_utils.py    From conditional-motion-propagation with MIT License 6 votes vote down vote up
def image_flow_crop(img1, img2, flow, crop_size, phase):
    assert len(crop_size) == 2
    pad_h = max(crop_size[0] - img1.height, 0)
    pad_w = max(crop_size[1] - img1.width, 0)
    pad_h_half = int(pad_h / 2)
    pad_w_half = int(pad_w / 2)
    if pad_h > 0 or pad_w > 0:
        flow_expand = np.zeros((img1.height + pad_h, img1.width + pad_w, 2), dtype=np.float32)
        flow_expand[pad_h_half:pad_h_half+img1.height, pad_w_half:pad_w_half+img1.width, :] = flow
        flow = flow_expand
        border = (pad_w_half, pad_h_half, pad_w - pad_w_half, pad_h - pad_h_half)
        img1 = ImageOps.expand(img1, border=border, fill=(0,0,0))
        img2 = ImageOps.expand(img2, border=border, fill=(0,0,0))
    if phase == 'train':
        hoff = int(np.random.rand() * (img1.height - crop_size[0]))
        woff = int(np.random.rand() * (img1.width - crop_size[1]))
    else:
        hoff = (img1.height - crop_size[0]) // 2
        woff = (img1.width - crop_size[1]) // 2

    img1 = img1.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0]))
    img2 = img2.crop((woff, hoff, woff+crop_size[1], hoff+crop_size[0]))
    flow = flow[hoff:hoff+crop_size[0], woff:woff+crop_size[1], :]
    offset = (hoff, woff)
    return img1, img2, flow, offset 
Example #7
Source File: general.py    From mxbox with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be cropped.

        Returns:
            PIL.Image: Cropped image.
        """
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)) 
Example #8
Source File: pil_aug_transforms.py    From openseg.pytorch with MIT License 6 votes vote down vote up
def __call__(self, img, labelmap=None, maskmap=None):
        assert isinstance(img, Image.Image)
        assert labelmap is None or isinstance(labelmap, Image.Image)
        assert maskmap is None or isinstance(maskmap, Image.Image)

        if random.random() > self.ratio:
            return img, labelmap, maskmap

        width, height = img.size
        left_pad, up_pad, right_pad, down_pad = self.pad
        target_size = [width + left_pad + right_pad, height + up_pad + down_pad]
        offset_left = -left_pad
        offset_up = -up_pad

        img = ImageOps.expand(img, border=tuple(self.pad), fill=tuple(self.mean))
        if maskmap is not None:
            maskmap = ImageOps.expand(maskmap, border=tuple(self.pad), fill=1)

        if labelmap is not None:
            labelmap = ImageOps.expand(labelmap, border=tuple(self.pad), fill=255)

        return img, labelmap, maskmap 
Example #9
Source File: augmentations.py    From seismic-deeplearning with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return (
                img.resize((tw, th), Image.BILINEAR),
                mask.resize((tw, th), Image.NEAREST),
            )

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return (
            img.crop((x1, y1, x1 + tw, y1 + th)),
            mask.crop((x1, y1, x1 + tw, y1 + th)),
        ) 
Example #10
Source File: functional.py    From Deep-Exemplar-based-Colorization with MIT License 6 votes vote down vote up
def rotate(img, angle, resample=False, expand=False, center=None):
    """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows)


    Args:
        img (PIL Image): PIL Image to be rotated.
        angle ({float, int}): In degrees degrees counter clockwise order.
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
            An optional resampling filter.
            See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    """

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.rotate(angle, resample, expand, center) 
Example #11
Source File: transforms.py    From binseg_pytoch with Apache License 2.0 6 votes vote down vote up
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be cropped.

        Returns:
            PIL.Image: Cropped image.
        """
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)) 
Example #12
Source File: joint_transforms.py    From pytorch-hair-segmentation with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #13
Source File: transforms.py    From SceneChangeDet with MIT License 6 votes vote down vote up
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be cropped.

        Returns:
            PIL.Image: Cropped image.
        """
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img

        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)) 
Example #14
Source File: joint_transforms.py    From pytorch-hair-segmentation with MIT License 6 votes vote down vote up
def pad_to_target(img, target_height, target_width, label=0):
    # Pad image with zeros to the specified height and width if needed
    # This op does nothing if the image already has size bigger than target_height and target_width.
    w, h = img.size
    left = top = right = bottom = 0
    doit = False
    if target_width > w:
        delta = target_width - w
        left = delta // 2
        right = delta - left
        doit = True
    if target_height > h:
        delta = target_height - h
        top = delta // 2
        bottom = delta - top
        doit = True
    if doit:
        img = ImageOps.expand(img, border=(left, top, right, bottom), fill=label)
    assert img.size[0] >= target_width
    assert img.size[1] >= target_height
    return img 
Example #15
Source File: transforms.py    From cat-net with MIT License 6 votes vote down vote up
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be cropped.

        Returns:
            PIL.Image: Cropped image.
        """
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img

        if self.x1 is None:
            self.x1 = random.randint(0, w - tw)
            self.y1 = random.randint(0, h - th)
        return img.crop((self.x1, self.y1, self.x1 + tw, self.y1 + th)) 
Example #16
Source File: augmentations.py    From CAG_UDA with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        tw, th = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return (
                img.resize((tw, th), Image.BILINEAR),
                mask.resize((tw, th), Image.NEAREST),
            )

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return (
            img.crop((x1, y1, x1 + tw, y1 + th)),
            mask.crop((x1, y1, x1 + tw, y1 + th)),
        ) 
Example #17
Source File: transforms.py    From scalpel with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be cropped.

        Returns:
            PIL.Image: Cropped image.
        """
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)) 
Example #18
Source File: functional.py    From SPG with MIT License 6 votes vote down vote up
def rotate(img, angle, resample=False, expand=False, center=None):
    """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows)


    Args:
        img (PIL Image): PIL Image to be rotated.
        angle ({float, int}): In degrees degrees counter clockwise order.
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
            An optional resampling filter.
            See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    """

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.rotate(angle, resample, expand, center) 
Example #19
Source File: custom_transforms.py    From RMI with MIT License 6 votes vote down vote up
def __call__(self, sample):
        """call method"""
        image, label = sample['image'], sample['label']
        width, height = image.size
        pad_width, pad_height = max(width, self.crop_width), max(height, self.crop_height)
        pad_width = self.crop_width - width if width < self.crop_width else 0
        pad_height = self.crop_height - height if height < self.crop_height else 0
        # pad the image with constant
        image = ImageOps.expand(image, border=(0, 0, pad_width, pad_height), fill=self.mean)
        label = ImageOps.expand(label, border=(0, 0, pad_width, pad_height), fill=self.ignore_label)
        # random crop image to crop_size
        new_w, new_h = image.size
        x1 = random.randint(0, new_w - self.crop_width)
        y1 = random.randint(0, new_h - self.crop_height)
        image = image.crop((x1, y1, x1 + self.crop_width, y1 + self.crop_height))
        label = label.crop((x1, y1, x1 + self.crop_width, y1 + self.crop_height))

        return {'image': image,
                'label': label} 
Example #20
Source File: functional.py    From ACoL with MIT License 6 votes vote down vote up
def rotate(img, angle, resample=False, expand=False, center=None):
    """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows)


    Args:
        img (PIL Image): PIL Image to be rotated.
        angle ({float, int}): In degrees degrees counter clockwise order.
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
            An optional resampling filter.
            See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    """

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.rotate(angle, resample, expand, center) 
Example #21
Source File: transforms.py    From deep-image-retrieval with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __call__(self, inp):
        img = F.grab_img(inp)

        padl = padt = 0
        if self.padding > 0:
            if F.is_pil_image(img):
                img = ImageOps.expand(img, border=self.padding, fill=0)
            else:
                assert isinstance(img, F.DummyImg)
                img = img.expand(border=self.padding)
            if isinstance(self.padding, int):
                padl = padt = self.padding
            else:
                padl, padt = self.padding[0:2]

        i, j, tw, th = self.get_params(img, self.size)
        img = img.crop((i, j, i+tw, j+th))

        return F.update_img_and_labels(inp, img, aff=(1,0,padl-i,0,1,padt-j)) 
Example #22
Source File: transforms.py    From pytorch_segmentation with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #23
Source File: segmentation_augmentations.py    From MultiObjectiveOptimization with MIT License 6 votes vote down vote up
def __call__(self, img, mask, ins, depth):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)
            ins = ImageOps.expand(ins, border=self.padding, fill=0)
            depth = ImageOps.expand(depth, border=self.padding, fill=0)

        assert img.size == mask.size
        assert img.size == ins.size
        assert img.size == depth.size

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask, ins, depth
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST), ins.resize((tw,th), Image.NEAREST), depth.resize((tw, th), Image.NEAREST)

        _sysrand = random.SystemRandom()
        x1 = _sysrand.randint(0, w - tw)
        y1 = _sysrand.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)), ins.crop((x1, y1, x1 + tw, y1 + th)),  depth.crop((x1, y1, x1 + tw, y1 + th)) 
Example #24
Source File: augmentations.py    From LightNet with MIT License 6 votes vote down vote up
def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size

        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th)) 
Example #25
Source File: transforms.py    From pnn.pytorch with MIT License 5 votes vote down vote up
def __call__(self, input):
		if self.padding > 0:
			input['img'] = ImageOps.expand(img, border=self.padding, fill=0)

		w, h = input['img'].size
		th, tw = self.size
		if w == tw and h == th:
			return input

		x1 = random.randint(0, w - tw)
		y1 = random.randint(0, h - th)
		input['img'] = input['img'].crop((x1, y1, x1 + tw, y1 + th))
		return input 
Example #26
Source File: draw.py    From ASKCOS with Mozilla Public License 2.0 5 votes vote down vote up
def TrimImgByWhite(img, padding=0):
    '''This function takes a PIL image, img, and crops it to the minimum rectangle 
    based on its whiteness/transparency. 5 pixel padding used automatically.'''

    # Convert to array
    as_array = np.array(img)  # N x N x (r,g,b,a)

    # Set previously-transparent pixels to white
    if as_array.shape[2] == 4:
        as_array[as_array[:, :, 3] == 0] = [255, 255, 255, 0]

    as_array = as_array[:, :, :3]

    # Content defined as non-white and non-transparent pixel
    has_content = np.sum(as_array, axis=2, dtype=np.uint32) != 255 * 3
    xs, ys = np.nonzero(has_content)

    # Crop down
    margin = 5
    x_range = max([min(xs) - margin, 0]), min([max(xs) + margin, as_array.shape[0]])
    y_range = max([min(ys) - margin, 0]), min([max(ys) + margin, as_array.shape[1]])
    as_array_cropped = as_array[
        x_range[0]:x_range[1], y_range[0]:y_range[1], 0:3]

    img = Image.fromarray(as_array_cropped, mode='RGB')

    return ImageOps.expand(img, border=padding, fill=(255, 255, 255)) 
Example #27
Source File: linegen.py    From kraken with Apache License 2.0 5 votes vote down vote up
def render_line(self, text):
        """
        Draws a line onto a Cairo surface which will be converted to an pillow
        Image.

        Args:
            text (unicode): A string which will be rendered as a single line.

        Returns:
            PIL.Image of mode 'L'.

        Raises:
            KrakenCairoSurfaceException if the Cairo surface couldn't be created
            (usually caused by invalid dimensions.
        """
        logger.info('Rendering line \'{}\''.format(text))
        logger.debug('Creating temporary cairo surface')
        temp_surface = cairo.cairo_image_surface_create(0, 0, 0)
        width, height = _draw_on_surface(temp_surface, self.font, self.language, text)
        cairo.cairo_surface_destroy(temp_surface)
        if width == 0 or height == 0:
            logger.error('Surface for \'{}\' zero pixels in at least one dimension'.format(text))
            raise KrakenCairoSurfaceException('Surface zero pixels in at least one dimension', width, height)
        logger.debug('Creating sized cairo surface')
        real_surface = cairo.cairo_image_surface_create(0, width, height)
        _draw_on_surface(real_surface, self.font, self.language, text)
        logger.debug('Extracing data from real surface')
        data = cairo.cairo_image_surface_get_data(real_surface)
        size = int(4 * width * height)
        buffer = ctypes.create_string_buffer(size)
        ctypes.memmove(buffer, data, size)
        logger.debug('Loading data into PIL image')
        im = Image.frombuffer("RGBA", (width, height), buffer, "raw", "BGRA", 0, 1)
        cairo.cairo_surface_destroy(real_surface)
        logger.debug('Expand and grayscale image')
        im = im.convert('L')
        im = ImageOps.expand(im, 5, 255)
        return im 
Example #28
Source File: warp.py    From open-vot with MIT License 5 votes vote down vote up
def pad_pil(image, npad, padding='avg'):
    if npad == 0:
        return image

    if padding == 'avg':
        avg_chan = ImageStat.Stat(image).mean
        # PIL doesn't support float RGB image
        avg_chan = tuple(int(round(c)) for c in avg_chan)
        image = ImageOps.expand(image, border=npad, fill=avg_chan)
    else:
        image = ImageOps.expand(image, border=npad, fill=padding)

    return image 
Example #29
Source File: warp.py    From open-vot with MIT License 5 votes vote down vote up
def pad(image, npad, padding='avg'):
    if npad == 0:
        return image

    if padding == 'avg':
        avg_chan = ImageStat.Stat(image).mean
        # PIL doesn't support float RGB image
        avg_chan = tuple(int(round(c)) for c in avg_chan)
        image = ImageOps.expand(image, border=npad, fill=avg_chan)
    else:
        image = ImageOps.expand(image, border=npad, fill=padding)

    return image 
Example #30
Source File: transforms.py    From landmark-detection with MIT License 5 votes vote down vote up
def __call__(self, imgs, point_meta=None):
    ## AugCrop has something wrong... For unsupervised data
  
    point_meta = point_meta.copy()
    if isinstance(imgs, list): is_list = True
    else:                      is_list, imgs = False, [imgs]

    dice_x, dice_y = random.random(), random.random()
    x_offset = int( (dice_x-0.5) * 2 * self.center_perterb_max)
    y_offset = int( (dice_y-0.5) * 2 * self.center_perterb_max)
    
    x1 = int(round( point_meta.center[0] + x_offset - self.crop_x / 2. ))
    y1 = int(round( point_meta.center[1] + y_offset - self.crop_y / 2. ))
    x2 = x1 + self.crop_x
    y2 = y1 + self.crop_y

    w, h = imgs[0].size
    if x1 < 0 or y1 < 0 or x2 >= w or y2 >= h:
      pad = max(0-x1, 0-y1, x2-w+1, y2-h+1)
      assert pad > 0, 'padding operation in crop must be greater than 0'
      imgs = [ ImageOps.expand(img, border=pad, fill=self.fill) for img in imgs ]
      x1, x2, y1, y2 = x1 + pad, x2 + pad, y1 + pad, y2 + pad
      point_meta.apply_offset(pad, pad)
      point_meta.apply_bound(imgs[0].size[0], imgs[0].size[1])

    point_meta.apply_offset(-x1, -y1)
    imgs = [ img.crop((x1, y1, x2, y2)) for img in imgs ]
    point_meta.apply_bound(imgs[0].size[0], imgs[0].size[1])

    if is_list == False: imgs = imgs[0]
    return imgs, point_meta