Python pandas.DataFrame.from_records() Examples
The following are 30
code examples of pandas.DataFrame.from_records().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.DataFrame
, or try the search function
.
Example #1
Source File: test_foreign.py From vnpy_crypto with MIT License | 6 votes |
def test_datetime_roundtrip(): dta = np.array([(1, datetime(2010, 1, 1), 2), (2, datetime(2010, 2, 1), 3), (4, datetime(2010, 3, 1), 5)], dtype=[('var1', float), ('var2', object), ('var3', float)]) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) assert_equal(dta, dta2) dta = DataFrame.from_records(dta) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf, pandas=True) ptesting.assert_frame_equal(dta, dta2.drop('index', axis=1))
Example #2
Source File: test.py From realtime_talib with MIT License | 6 votes |
def getCryptoHistoricalData(self, symbol, endTime, histPeriod, vwap=False): endTimeUNIX = dateToUNIX(endTime) startDate = getCurrentDateStr() priorDate = datetimeDiff(startDate, histPeriod) gdaxTicker = GDAX_TO_POLONIEX[symbol] stDateUNIX = dateToUNIX(priorDate) eDateUNIX = dateToUNIX(startDate) poloniexJsonURL = self.POLO_HIST_DATA.format(gdaxTicker, stDateUNIX, eDateUNIX, self.interval) import json import requests poloniexJson = requests.get(poloniexJsonURL).json() from pandas import DataFrame histDataframe = DataFrame.from_records(poloniexJson) histDataframe.drop('quoteVolume', axis=1, inplace=True) histDataframe.drop('weightedAverage', axis=1, inplace=True) histDataframe['date'] = histDataframe['date'].astype(float) return histDataframe[["date", "open", "high", "low", "close", "volume"]]
Example #3
Source File: Xueqiu.py From dHydra with Apache License 2.0 | 6 votes |
def get_stocks( self, stockTypeList=['sha', 'shb', 'sza', 'szb'], columns=CONST_XUEQIU_QUOTE_ORDER_COLUMN ): for stockType in stockTypeList: print("正在从雪球获取:{}".format(EX_NAME[stockType])) page = 1 while True: response = self.session.get( URL_XUEQIU_QUOTE_ORDER(page, columns, stockType), headers=HEADERS_XUEQIU ).json() df = DataFrame.from_records( response["data"], columns=response["column"]) if 'stocks' not in locals().keys(): stocks = df else: stocks = stocks.append(df) if df.size == 0: break page += 1 return stocks
Example #4
Source File: Xueqiu.py From dHydra with Apache License 2.0 | 6 votes |
def get_quotation(self, symbol=None, symbolSet=None, dataframe=True, threadNum=3): if 'quotation' in self.__dict__.keys(): del(self.quotation) # Cut symbolList symbolList = list(symbolSet) threads = [] symbolListSlice = util.slice_list(num=threadNum, data_list=symbolList) for symbolList in symbolListSlice: loop = asyncio.new_event_loop() symbolsList = util.slice_list(step=50, data_list=symbolList) tasks = [self.get_quotation_task( symbols=symbols) for symbols in symbolsList] t = threading.Thread(target=util.thread_loop, args=(loop, tasks)) threads.append(t) for t in threads: t.start() for t in threads: t.join() if dataframe: self.quotation = DataFrame.from_records(self.quotation).T return(self.quotation)
Example #5
Source File: test_foreign.py From vnpy_crypto with MIT License | 6 votes |
def test_stata_writer_pandas(): buf = BytesIO() dta = macrodata.load().data dtype = dta.dtype #as of 0.9.0 pandas only supports i8 and f8 dta = dta.astype(np.dtype([('year', 'i8'), ('quarter', 'i8')] + dtype.descr[2:])) dta4 = dta.astype(np.dtype([('year', 'i4'), ('quarter', 'i4')] + dtype.descr[2:])) dta = DataFrame.from_records(dta) dta4 = DataFrame.from_records(dta4) # dta is int64 'i8' given to Stata writer writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) dta5 = DataFrame.from_records(dta2) # dta2 is int32 'i4' returned from Stata reader if dta5.dtypes[1] is np.dtype('int64'): ptesting.assert_frame_equal(dta.reset_index(), dta5) else: # don't check index because it has different size, int32 versus int64 ptesting.assert_frame_equal(dta4, dta5[dta5.columns[1:]])
Example #6
Source File: database.py From cgat-core with MIT License | 6 votes |
def fetch_DataFrame(query, dbhandle=None, attach=False): '''Fetch query results and returns them as a pandas dataframe''' dbhandle = connect(dbhandle, attach=attach) cc = dbhandle.cursor() sqlresult = cc.execute(query).fetchall() cc.close() # see http://pandas.pydata.org/pandas-docs/dev/generated/ # pandas.DataFrame.from_records.html#pandas.DataFrame.from_records # this method is design to handle sql_records with proper type # conversion field_names = [d[0] for d in cc.description] pandas_DataFrame = DataFrame.from_records( sqlresult, columns=field_names) return pandas_DataFrame
Example #7
Source File: python_parser_only.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_read_table_buglet_4x_multiindex(self): # see gh-6607 text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = self.read_table(StringIO(text), sep=r'\s+') assert df.index.names == ('one', 'two', 'three', 'four') # see gh-6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records( [(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep=r'\s+') tm.assert_frame_equal(actual, expected)
Example #8
Source File: test_testing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_index_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'c': ['l1', 'l2']}, index=['a']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'c': ['l1', 'l2']}, index=['a']) self._assert_not_equal(df1.c, df2.c, check_index_type=True)
Example #9
Source File: test_testing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_multiindex_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) self._assert_not_equal(df1.c, df2.c, check_index_type=True)
Example #10
Source File: test_testing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_index_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'c': ['l1', 'l2']}, index=['a']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'c': ['l1', 'l2']}, index=['a']) self._assert_not_equal(df1, df2, check_index_type=True)
Example #11
Source File: util.py From PyAthenaJDBC with MIT License | 5 votes |
def as_pandas(cursor, coerce_float=False): from pandas import DataFrame names = [metadata[0] for metadata in cursor.description] return DataFrame.from_records( cursor.fetchall(), columns=names, coerce_float=coerce_float )
Example #12
Source File: test_testing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_multiindex_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) self._assert_not_equal(df1, df2, check_index_type=True)
Example #13
Source File: common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_empty_with_nrows_chunksize(self): # see gh-9535 expected = DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(self.read_csv( StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records( result), expected, check_index_type=False) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = next(iter(self.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records(result), expected, check_index_type=False)
Example #14
Source File: test_sql.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _to_sql_save_index(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') assert ix_cols == [['A', ], ]
Example #15
Source File: test_combine_concat.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test': lrange(10)}) # it works! pd.concat([df1, df2_obj])
Example #16
Source File: test_sql.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_multiindex_roundtrip(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A', 'B']) df.to_sql('test_multiindex_roundtrip', self.conn) result = sql.read_sql_query('SELECT * FROM test_multiindex_roundtrip', self.conn, index_col=['A', 'B']) tm.assert_frame_equal(df, result, check_index_type=True)
Example #17
Source File: test_taar_locale.py From python_mozetl with MIT License | 5 votes |
def addon_counts(): return DataFrame.from_records( SAMPLE_ADDON_COUNTS, columns=["locale", "addon", "count"] )
Example #18
Source File: numpy.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def recarray_select(recarray, fields): """" Work-around for changes in NumPy 1.13 that return views for recarray multiple column selection """ from pandas import DataFrame fields = [fields] if not isinstance(fields, (tuple, list)) else fields if len(fields) == len(recarray.dtype): return recarray recarray = DataFrame.from_records(recarray) return recarray[fields].to_records(index=False)
Example #19
Source File: Sina.py From dHydra with Apache License 2.0 | 5 votes |
def get_history_data(self, code, year, season): """ 新浪历史复权数据接口 """ res = self.session.get(url=URL_HISTORY_DATA(code, year, season)) if res.status_code == 200: pattern_data = r'<div align="center">([\d\.]+)</div>' data = re.findall(pattern_data, res.text) records = util.slice_list(step=7, data_list=data) print(records) df = DataFrame.from_records( records, columns=[ 'open', 'high', 'close', 'low', 'volume', 'amount', 'restoration_factor' ] ) pattern_date = r'date=([\d]{4}-[\d]{2}-[\d]{2})' date = re.findall(pattern_date, res.text) df["date"] = date return df else: self.logger.debug("Status Code: {}".format(res.status_code)) return False
Example #20
Source File: Sina.py From dHydra with Apache License 2.0 | 5 votes |
def get_history_data(self, code, year, season): """ 新浪历史复权数据接口 """ res = self.session.get(url=URL_HISTORY_DATA(code, year, season)) if res.status_code == 200: pattern_data = r'<div align="center">([\d\.]+)</div>' data = re.findall(pattern_data, res.text) records = util.slice_list(step=7, data_list=data) print(records) df = DataFrame.from_records( records, columns=[ 'open', 'high', 'close', 'low', 'volume', 'amount', 'restoration_factor' ] ) pattern_date = r'date=([\d]{4}-[\d]{2}-[\d]{2})' date = re.findall(pattern_date, res.text) df["date"] = date return df else: self.logger.debug("Status Code: {}".format(res.status_code)) return False
Example #21
Source File: Xueqiu.py From dHydra with Apache License 2.0 | 5 votes |
def fetch_quotation_coroutine(self, symbols=None): loop = asyncio.get_event_loop() if symbols is not None: async_req = loop.run_in_executor( None, functools.partial( self.session.get, URL_XUEQIU_QUOTE(symbols), headers=HEADERS_XUEQIU ) ) try: quotation = yield from async_req except Exception as e: print(e) async_req = loop.run_in_executor( None, functools.partial( self.session.get, URL_XUEQIU_QUOTE(symbols), headers=HEADERS_XUEQIU ) ) quotation = yield from async_req quotation = quotation.json() return(quotation) # """ # 雪球单股基本面数据获取 # 默认返回值格式是dict,若参数dataframe为True则返回dataframe # """ # def fetch_quotation(self, symbols = None, dataframe = False): # symbols = util.symbols_to_string(symbols) # if symbols is not None: # quotation = self.session.get( # URL_XUEQIU_QUOTE(symbols) # , headers = HEADERS_XUEQIU # ).json() # if dataframe: # quotation = DataFrame.from_records( quotation ).T # return(quotation)
Example #22
Source File: Xueqiu.py From dHydra with Apache License 2.0 | 5 votes |
def get_today(self, symbol, period='1day', dataframe=True): quotation = self.session.get( URL_XUEQIU_CHART(symbol=symbol, period=period), headers=HEADERS_XUEQIU ).json() if quotation["success"] == "true": if dataframe: df = DataFrame.from_records(quotation["chartlist"]) df["time"] = pandas.to_datetime(df["time"]) df["time"] += timedelta(hours=8) df["symbol"] = symbol return df else: return quotation["chartlist"] else: return False
Example #23
Source File: test_timezones.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_frame_from_records_utc(self): rec = {'datum': 1.5, 'begin_time': datetime(2006, 4, 27, tzinfo=pytz.utc)} # it works DataFrame.from_records([rec], index='begin_time')
Example #24
Source File: test_combine_concat.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test': lrange(10)}) # it works! pd.concat([df1, df2_obj])
Example #25
Source File: test_testing.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_index_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'c': ['l1', 'l2']}, index=['a']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'c': ['l1', 'l2']}, index=['a']) self._assert_not_equal(df1.c, df2.c, check_index_type=True)
Example #26
Source File: test_testing.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multiindex_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'b': [2.1, 1.5], 'c': ['l1', 'l2']}, index=['a', 'b']) self._assert_not_equal(df1.c, df2.c, check_index_type=True)
Example #27
Source File: test_testing.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_index_dtype(self): df1 = DataFrame.from_records( {'a': [1, 2], 'c': ['l1', 'l2']}, index=['a']) df2 = DataFrame.from_records( {'a': [1.0, 2.0], 'c': ['l1', 'l2']}, index=['a']) self._assert_not_equal(df1, df2, check_index_type=True)
Example #28
Source File: test_sql.py From twitter-stock-recommendation with MIT License | 5 votes |
def _to_sql_save_index(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') assert ix_cols == [['A', ], ]
Example #29
Source File: test_sql.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multiindex_roundtrip(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A', 'B']) df.to_sql('test_multiindex_roundtrip', self.conn) result = sql.read_sql_query('SELECT * FROM test_multiindex_roundtrip', self.conn, index_col=['A', 'B']) tm.assert_frame_equal(df, result, check_index_type=True)
Example #30
Source File: test_sql.py From vnpy_crypto with MIT License | 5 votes |
def _to_sql_save_index(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') assert ix_cols == [['A', ], ]