Python chainer.testing.product() Examples
The following are 20
code examples of chainer.testing.product().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.testing
, or try the search function
.
Example #1
Source File: test_l2_normalization.py From chainer with MIT License | 6 votes |
def check_forward(self, x_data, axis): eps = self.eps x = chainer.Variable(x_data) y = functions.normalize(x, eps=eps, axis=axis) self.assertEqual(y.data.dtype, self.dtype) y_data = cuda.to_cpu(y.data) y_expect = numpy.empty_like(self.x) shape = self.x.shape indices = [] axis_tuple = axis if isinstance(axis, tuple) else (axis,) for i in six.moves.range(len(shape)): if i not in axis_tuple: indices.append(six.moves.range(shape[i])) else: indices.append([slice(None)]) indices_tuple = list(itertools.product(*indices)) for index in indices_tuple: # Note: Casting back the result of `numpy.linalg.norm` to `x.dtype` # because old NumPy casts it to float32 when a float16 value is # given. numerator = numpy.linalg.norm(self.x[index]).astype(x.dtype) + eps y_expect[index] = self.x[index] / numerator testing.assert_allclose(y_expect, y_data, **self.check_forward_options)
Example #2
Source File: test_read_image.py From chainercv with MIT License | 6 votes |
def _create_parameters(): params = testing.product({ 'file_obj': [False, True], 'size': [(48, 32)], 'dtype': [np.float32, np.uint8, bool]}) no_color_params = testing.product({ 'format': ['bmp', 'jpeg', 'png'], 'color': [False], 'alpha': [None]}) no_alpha_params = testing.product({ 'format': ['bmp', 'jpeg', 'png'], 'color': [True], 'alpha': [None]}) alpha_params = testing.product({ # writing alpha image with jpeg encoding didn't work 'format': ['png'], 'color': [True], 'alpha': ['ignore', 'blend_with_white', 'blend_with_black']}) params = testing.product_dict( params, no_color_params + no_alpha_params + alpha_params) return params
Example #3
Source File: test_split_axis.py From chainer with MIT License | 6 votes |
def inject_backend_tests(): decorator = backend.inject_backend_tests( None, # CPU tests testing.product({ 'use_cuda': [False], 'use_ideep': ['never', 'always'], }) # GPU tests + [{'use_cuda': True}] # ChainerX tests + [ {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ]) return decorator
Example #4
Source File: test_snapshot.py From chainer with MIT License | 6 votes |
def test_find_snapshot_files(self): noise = ('tmpsnapshot_iter_{}.{}'.format(i, j) for i, j in zip(range(10, 304), range(10, 200))) for file in itertools.chain(noise, self.files): file = os.path.join(self.path, file) open(file, 'w').close() snapshot_files = _find_snapshot_files(self.fmt, self.path) expected = [self.fmt.format(i*10, j*10) for i, j in itertools.product(range(0, 10), range(0, 10))] timestamps, snapshot_files = zip(*snapshot_files) expected.sort() snapshot_files = sorted(list(snapshot_files)) assert expected == snapshot_files
Example #5
Source File: test_unpooling_nd.py From chainer with MIT License | 5 votes |
def xs_iter(dims): return itertools.product(*[range(d) for d in dims])
Example #6
Source File: test_function_node.py From chainer with MIT License | 5 votes |
def make_array(start, shape, dtype, device): size = numpy.product(shape, dtype='i') a = numpy.arange(start, start + size) a = a.reshape(shape) a = a.astype(dtype, copy=False) return device.send(a)
Example #7
Source File: test_coco_bbox_dataset.py From chainercv with MIT License | 5 votes |
def _create_paramters(): split_years = testing.product({ 'split': ['train', 'val'], 'year': ['2014', '2017']}) split_years += [{'split': 'minival', 'year': '2014'}, {'split': 'valminusminival', 'year': '2014'}] use_and_return_args = testing.product({ 'use_crowded': [False, True], 'return_crowded': [False, True], 'return_area': [False, True]}) params = testing.product_dict( split_years, use_and_return_args) return params
Example #8
Source File: test_coco_instance_segmentation_dataset.py From chainercv with MIT License | 5 votes |
def _create_paramters(): split_years = testing.product({ 'split': ['train', 'val'], 'year': ['2014', '2017']}) split_years += [{'split': 'minival', 'year': '2014'}, {'split': 'valminusminival', 'year': '2014'}] use_and_return_args = testing.product({ 'use_crowded': [False, True], 'return_crowded': [False, True], 'return_area': [False, True], 'return_bbox': [False, True]}) params = testing.product_dict( split_years, use_and_return_args) return params
Example #9
Source File: test_voc_bbox_dataset.py From chainercv with MIT License | 5 votes |
def _create_paramters(): split_years = testing.product({ 'split': ['train', 'trainval', 'val'], 'year': ['2007', '2012']}) split_years += [{'split': 'test', 'year': '2007'}] params = testing.product_dict( split_years, [{'use_difficult': True, 'return_difficult': True}, {'use_difficult': True, 'return_difficult': False}, {'use_difficult': False, 'return_difficult': True}, {'use_difficult': False, 'return_difficult': False}]) return params
Example #10
Source File: test_parameterized.py From chainer with MIT License | 5 votes |
def test_product(self): self.assertListEqual(testing.product(self.actual), self.expect)
Example #11
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def check_col2im_nd(self, ksize, stride, pad, gpu): dims = self.dims outs = tuple(conv_nd.get_conv_outsize(d, k, s, p) for (d, k, s, p) in zip(dims, ksize, stride, pad)) col_shape = (2, 3) + ksize + outs col = numpy.random.uniform(-1, 1, col_shape).astype(numpy.float32) if gpu: col_data = cuda.to_gpu(col) else: col_data = col img = conv_nd.col2im_nd(col_data, stride, pad, dims) img = cuda.to_cpu(img) img_shape = (2, 3) + dims self.assertEqual(img.shape, img_shape) for n in moves.range(2): for c in moves.range(3): for xs in itertools.product( *[moves.range(d) for d in dims]): v = numpy.float32(0.0) for dxs in itertools.product( *[moves.range(k) for k in ksize]): oxs = tuple((x + p - dx) // s for (x, p, dx, s) in zip(xs, pad, dxs, stride)) if all((x + p - dx) % s == 0 for (x, p, dx, s) in zip(xs, pad, dxs, stride)) and \ all(0 <= ox < out for (ox, out) in zip(oxs, outs)): col_index = (n, c) + dxs + oxs v += col[col_index] img_index = (n, c) + xs self.assertAlmostEqual(img[img_index], v)
Example #12
Source File: test_conv_nd.py From chainer with MIT License | 5 votes |
def check_im2col_nd(self, ksize, stride, pad, gpu): dims = self.dims if gpu: img = cuda.to_gpu(self.img) else: img = self.img col = conv_nd.im2col_nd(img, ksize, stride, pad) outs = tuple(conv_nd.get_conv_outsize(d, k, s, p) for (d, k, s, p) in zip(dims, ksize, stride, pad)) expected_shape = (2, 3) + ksize + outs self.assertEqual(col.shape, expected_shape) col = cuda.to_cpu(col) for n in moves.range(2): for c in moves.range(3): for xs in itertools.product( *[moves.range(out) for out in outs]): for dxs in itertools.product( *[moves.range(k) for k in ksize]): oxs = tuple(x * s - p + dx for (x, s, p, dx) in zip(xs, stride, pad, dxs)) if all(0 <= ox < d for (ox, d) in zip(oxs, dims)): col_index = (n, c) + dxs + xs img_index = (n, c) + oxs self.assertEqual( col[col_index], self.img[img_index]) else: col_index = (n, c) + dxs + xs self.assertEqual(col[col_index], 0)
Example #13
Source File: test_unpooling_nd.py From chainer with MIT License | 5 votes |
def kxs_iter(x, outs, ksize, stride, pad): return itertools.product( *[range(max(0, -p + s * _x), min(-p + s * _x + k, out)) for (_x, out, k, s, p) in zip(x, outs, ksize, stride, pad)])
Example #14
Source File: test_trpo.py From chainerrl with MIT License | 5 votes |
def test_first_order(self): # First order, so its Hessian will contain None params, y = self._generate_params_and_first_order_output() old_style_funcs = trpo._find_old_style_function([y]) if old_style_funcs: self.skipTest("\ Chainer v{} does not support double backprop of these functions: {}.".format( chainer.__version__, old_style_funcs)) vec = np.random.rand(4).astype(np.float32) # Hessian-vector product computation should raise an error due to None with self.assertRaises(AssertionError): compute_hessian_vector_product(y, params, vec)
Example #15
Source File: test_function_slstm.py From chainer with MIT License | 5 votes |
def inject_backend_tests(method_names): decorator = backend.inject_backend_tests( method_names, # CPU tests testing.product({ 'use_cuda': [False], 'use_ideep': ['never', 'always'], }) + # GPU tests [{'use_cuda': True}]) return decorator
Example #16
Source File: test_function_lstm.py From chainer with MIT License | 5 votes |
def inject_backend_tests(method_names): decorator = backend.inject_backend_tests( method_names, # CPU tests testing.product({ 'use_cuda': [False], 'use_ideep': ['never', 'always'], }) # GPU tests + [{'use_cuda': True}]) return decorator
Example #17
Source File: test_snapshot.py From chainer with MIT License | 5 votes |
def setUp(self): self.path = tempfile.mkdtemp() self.files = (self.fmt.format(i*10, j*10) for i, j in itertools.product(range(0, 10), range(0, 10)))
Example #18
Source File: test_independent.py From chainer with MIT License | 5 votes |
def _generate_test_parameter( parameter_list, inner_shape, inner_event_shape, reinterpreted_batch_ndims): shape_pattern = _generate_valid_shape_pattern( inner_shape, inner_event_shape, reinterpreted_batch_ndims) return [ dict(dicts[0], **dicts[1]) for dicts in itertools.product(parameter_list, shape_pattern) ]
Example #19
Source File: test_crf1d.py From chainer with MIT License | 5 votes |
def _crf1d(self, cost_data, xs_data, ys_data): z = numpy.zeros((self.batches[0],), numpy.float32) for b, length in enumerate(self.lengths): for ys in itertools.product(range(self.n_label), repeat=length): z[b] += numpy.exp(chainer.cuda.to_cpu(self._calc_score(b, ys))) score = numpy.zeros((self.batches[0],), numpy.float32) for b, length in enumerate(self.lengths): ys = [self.ys[i][b] for i in range(length)] score[b] = self._calc_score(b, ys) loss = -(score - numpy.log(z)) return numpy.sum(loss) / self.batches[0]
Example #20
Source File: test_function.py From chainer with MIT License | 5 votes |
def make_array(start, shape, dtype): size = numpy.product(shape, dtype='i') a = numpy.arange(start, start + size) a = a.reshape(shape) a = a.astype(dtype, copy=False) return a