Python sklearn.dummy.DummyClassifier() Examples

The following are 30 code examples of sklearn.dummy.DummyClassifier(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.dummy , or try the search function .
Example #1
Source File: _lagrangian.py    From fairlearn with MIT License 7 votes vote down vote up
def _call_oracle(self, lambda_vec):
        signed_weights = self.obj.signed_weights() + self.constraints.signed_weights(lambda_vec)
        redY = 1 * (signed_weights > 0)
        redW = signed_weights.abs()
        redW = self.n * redW / redW.sum()

        redY_unique = np.unique(redY)

        classifier = None
        if len(redY_unique) == 1:
            logger.debug("redY had single value. Using DummyClassifier")
            classifier = DummyClassifier(strategy='constant',
                                         constant=redY_unique[0])
            self.n_oracle_calls_dummy_returned += 1
        else:
            classifier = pickle.loads(self.pickled_estimator)

        oracle_call_start_time = time()
        classifier.fit(self.X, redY, sample_weight=redW)
        self.oracle_execution_times.append(time() - oracle_call_start_time)
        self.n_oracle_calls += 1

        return classifier 
Example #2
Source File: __init__.py    From sklearn2pmml with GNU Affero General Public License v3.0 6 votes vote down vote up
def test_fit_predict(self):
		df = DataFrame([[-1, 0], [0, 0], [-1, -1], [1, 1], [-1, -1]], columns = ["X", "y"])
		X = df[["X"]]
		y = df["y"]
		classifier = clone(SelectFirstClassifier([
			("negative", DummyClassifier(strategy = "most_frequent"), "X[0] < 0"),
			("positive", DummyClassifier(strategy = "most_frequent"), "X[0] > 0"),
			("zero", DummyClassifier(strategy = "constant", constant = 0), str(True))
		]))
		params = classifier.get_params(deep = True)
		self.assertEqual("most_frequent", params["negative__strategy"])
		self.assertEqual("most_frequent", params["positive__strategy"])
		self.assertEqual("constant", params["zero__strategy"])
		self.assertEqual(0, params["zero__constant"])
		classifier.fit(X, y)
		preds = classifier.predict(X)
		self.assertEqual([-1, 0, -1, 1, -1], preds.tolist())
		pred_probs = classifier.predict_proba(X)
		self.assertEqual((5, 2), pred_probs.shape) 
Example #3
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_uniform_strategy_sparse_target_warning():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[2, 1],
                                [2, 2],
                                [1, 4],
                                [4, 2],
                                [1, 1]]))

    clf = DummyClassifier(strategy="uniform", random_state=0)
    assert_warns_message(UserWarning,
                         "the uniform strategy would not save memory",
                         clf.fit, X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 1 / 3, decimal=1)
        assert_almost_equal(p[2], 1 / 3, decimal=1)
        assert_almost_equal(p[4], 1 / 3, decimal=1) 
Example #4
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_constant_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[0, 1],
                                [4, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0])
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert_true(sp.issparse(y_pred))
    assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)),
                                                    np.zeros((n_samples, 1))])) 
Example #5
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_constant_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[2, 3],
                  [1, 3],
                  [2, 3],
                  [2, 0]])

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0,
                          constant=[1, 0])
    clf.fit(X, y)
    assert_array_equal(clf.predict(X),
                       np.hstack([np.ones((n_samples, 1)),
                                  np.zeros((n_samples, 1))]))
    _check_predict_proba(clf, X, y) 
Example #6
Source File: rq1_cnn_1d.py    From DeepLearningSmells with Apache License 2.0 6 votes vote down vote up
def measure_performance_dummy_classifier():
    outfile = get_out_file("dummy_classifier")
    write_result(outfile, "smell,auc,precision,recall,f1,average_precision\n")
    for smell in smell_list:
        data_path = os.path.join(os.path.join(TOKENIZER_OUT_PATH, smell), DIM)
        input_data = get_all_data(data_path, smell)
        # clf = DummyClassifier(strategy='stratified', random_state=0)
        clf = DummyClassifier(strategy='most_frequent', random_state=0)
        inverted_train_labels = inputs.invert_labels(input_data.train_labels)
        clf.fit(input_data.train_data, inverted_train_labels)
        y_pred = clf.predict(input_data.eval_data)

        auc, precision, recall, f1, average_precision, fpr, tpr = \
            metrics_util.get_all_metrics_(input_data.eval_labels, y_pred)

        write_result(outfile,
                     smell + "," + str(auc) + "," + str(precision) + "," + str(recall) + "," + str(f1) + "," + str(
                         average_precision) + "\n") 
Example #7
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_uniform_strategy_multioutput():
    X = [[0]] * 4  # ignored
    y = np.array([[2, 1],
                  [2, 2],
                  [1, 2],
                  [1, 1]])
    clf = DummyClassifier(strategy="uniform", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 0.5, decimal=1)
        assert_almost_equal(p[2], 0.5, decimal=1)
        _check_predict_proba(clf, X, y)

    _check_behavior_2d(clf) 
Example #8
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_stratified_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[4, 1],
                                [0, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)
    assert_true(sp.issparse(y_pred))
    y_pred = y_pred.toarray()

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 3. / 5, decimal=1)
        assert_almost_equal(p[0], 1. / 5, decimal=1)
        assert_almost_equal(p[4], 1. / 5, decimal=1) 
Example #9
Source File: test_weight_boosting.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_multidimensional_X():
    """
    Check that the AdaBoost estimators can work with n-dimensional
    data matrix
    """

    from sklearn.dummy import DummyClassifier, DummyRegressor

    rng = np.random.RandomState(0)

    X = rng.randn(50, 3, 3)
    yc = rng.choice([0, 1], 50)
    yr = rng.randn(50)

    boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent'))
    boost.fit(X, yc)
    boost.predict(X)
    boost.predict_proba(X)

    boost = AdaBoostRegressor(DummyRegressor())
    boost.fit(X, yr)
    boost.predict(X) 
Example #10
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[1, 0],
                                [1, 3],
                                [4, 0],
                                [0, 1],
                                [1, 0]]))

    n_samples = len(X)
    y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)

        y_pred = clf.predict(X)
        assert_true(sp.issparse(y_pred))
        assert_array_equal(y_pred.toarray(), y_expected) 
Example #11
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[1, 0],
                  [2, 0],
                  [1, 0],
                  [1, 3]])

    n_samples = len(X)

    for strategy in ("prior", "most_frequent"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X),
                           np.hstack([np.ones((n_samples, 1)),
                                      np.zeros((n_samples, 1))]))
        _check_predict_proba(clf, X, y)
        _check_behavior_2d(clf) 
Example #12
Source File: rq1_rnn_emb_lstm.py    From DeepLearningSmells with Apache License 2.0 6 votes vote down vote up
def measure_performance_dummy_classifier():
    outfile = get_out_file("dummy_classifier")
    write_result(outfile, "smell,auc,precision,recall,f1,average_precision\n")
    for smell in smell_list:
        data_path = os.path.join(os.path.join(TOKENIZER_OUT_PATH, smell), DIM)
        input_data = get_all_data(data_path, smell)
        # clf = DummyClassifier(strategy='stratified', random_state=0)
        clf = DummyClassifier(strategy='most_frequent', random_state=0)
        inverted_train_labels = inputs.invert_labels(input_data.train_labels)

        # clf.fit(input_data.train_data, input_data.train_labels)
        clf.fit(input_data.train_data, inverted_train_labels)
        y_pred = clf.predict(input_data.eval_data)

        auc, precision, recall, f1, average_precision, fpr, tpr = \
            metrics_util.get_all_metrics_(input_data.eval_labels, y_pred)

        write_result(outfile,
                     smell + "," + str(auc) + "," + str(precision) + "," + str(recall) + "," + str(f1) + "," + str(
                         average_precision) + "\n") 
Example #13
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy():
    X = [[0], [0], [0], [0]]  # ignored
    y = [1, 2, 1, 1]

    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X), np.ones(len(X)))
        _check_predict_proba(clf, X, y)

        if strategy == "prior":
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)))
        else:
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)) > 0.5) 
Example #14
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_constant_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[2, 3],
                  [1, 3],
                  [2, 3],
                  [2, 0]])

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0,
                          constant=[1, 0])
    clf.fit(X, y)
    assert_array_equal(clf.predict(X),
                       np.hstack([np.ones((n_samples, 1)),
                                  np.zeros((n_samples, 1))]))
    _check_predict_proba(clf, X, y) 
Example #15
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_constant_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[0, 1],
                                [4, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0])
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert sp.issparse(y_pred)
    assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)),
                                                    np.zeros((n_samples, 1))])) 
Example #16
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_stratified_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[4, 1],
                                [0, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)
    assert sp.issparse(y_pred)
    y_pred = y_pred.toarray()

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 3. / 5, decimal=1)
        assert_almost_equal(p[0], 1. / 5, decimal=1)
        assert_almost_equal(p[4], 1. / 5, decimal=1) 
Example #17
Source File: test_dummy.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[1, 0],
                                [1, 3],
                                [4, 0],
                                [0, 1],
                                [1, 0]]))

    n_samples = len(X)
    y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)

        y_pred = clf.predict(X)
        assert sp.issparse(y_pred)
        assert_array_equal(y_pred.toarray(), y_expected) 
Example #18
Source File: test_partial_dependence.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_warning_recursion_non_constant_init():
    # make sure that passing a non-constant init parameter to a GBDT and using
    # recursion method yields a warning.

    gbc = GradientBoostingClassifier(init=DummyClassifier(), random_state=0)
    gbc.fit(X, y)

    with pytest.warns(
            UserWarning,
            match='Using recursion method with a non-constant init predictor'):
        partial_dependence(gbc, X, [0], method='recursion')

    with pytest.warns(
            UserWarning,
            match='Using recursion method with a non-constant init predictor'):
        partial_dependence(gbc, X, [0], method='recursion') 
Example #19
Source File: methods.py    From rumour-classification with GNU Lesser General Public License v3.0 6 votes vote down vote up
def get_methods_multitask(tasks_number, header, random_restarts=-1):
    FEATURES_BOW, FEATURES_BROWN, index_task, _=extract_feature_indices(header)
    
    GPCONSTRUCTOR=lambda kernel_constructor, name, random_restarts: MCGP(kernel_constructor=kernel_constructor, 
                                                                         labels=LABELS, name=name, random_restarts=random_restarts)
    
    methodsmultitask=[
             lambda: SklearnBaseline(lambda: DummyClassifier("most_frequent"), "MostFrequentPooled", [0]),
             lambda: GPCONSTRUCTOR(kernel_constructor=lambda: single_task_kernel(FEATURES_BOW, False, "FEATURES_BOW"), 
                                   name="BOWGPjoinedfeaturesPooledLIN", 
                                   random_restarts=random_restarts),
             lambda: GPCONSTRUCTOR(kernel_constructor=lambda: single_task_kernel(FEATURES_BROWN, False, "FEATURES_BROWN"), 
                                   name="BROWNGPjoinedfeaturesPooledLIN", 
                                   random_restarts=random_restarts),
             lambda: GPCONSTRUCTOR(kernel_constructor=lambda: multi_task_kernel(tasks_number, index_task, 
                                                                                single_task_kernel(FEATURES_BROWN, False, "FEATURES_BROWN")), 
                                                                                name="BROWNGPjoinedfeaturesICMLIN", random_restarts=random_restarts),
             lambda: GPCONSTRUCTOR(kernel_constructor=lambda: multi_task_kernel(tasks_number, index_task, 
                                                                                single_task_kernel(FEATURES_BOW, False, "FEATURES_BOW")), 
                                                                                name="BOWGPjoinedfeaturesICMLIN", random_restarts=random_restarts),
             ]
    return methodsmultitask, map(lambda x: x().name, methodsmultitask) 
Example #20
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_stratified_strategy_multioutput():
    X = [[0]] * 5  # ignored
    y = np.array([[2, 1],
                  [2, 2],
                  [1, 1],
                  [1, 2],
                  [1, 1]])

    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 3. / 5, decimal=1)
        assert_almost_equal(p[2], 2. / 5, decimal=1)
        _check_predict_proba(clf, X, y)

    _check_behavior_2d(clf) 
Example #21
Source File: dummy_clf.py    From 2020plus with Apache License 2.0 6 votes vote down vote up
def __init__(self, df,
                 strategy='most_frequent',
                 weight=False,
                 min_ct=0):
        self.logger = logging.getLogger(__name__)
        super(DummyClf, self).__init__()  # call base constructor
        #self.set_min_count(min_ct)
        self.is_weighted_sample = False

        # process data
        #df = self._filter_rows(df)  # filter out low count rows
        df = df.fillna(df.mean())
        self.x, self.y = futils.randomize(df)

        # setup classifier
        self.clf = DummyClassifier(strategy=strategy) 
Example #22
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[1, 0],
                  [2, 0],
                  [1, 0],
                  [1, 3]])

    n_samples = len(X)

    for strategy in ("prior", "most_frequent"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X),
                           np.hstack([np.ones((n_samples, 1)),
                                      np.zeros((n_samples, 1))]))
        _check_predict_proba(clf, X, y)
        _check_behavior_2d(clf) 
Example #23
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_most_frequent_and_prior_strategy():
    X = [[0], [0], [0], [0]]  # ignored
    y = [1, 2, 1, 1]

    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X), np.ones(len(X)))
        _check_predict_proba(clf, X, y)

        if strategy == "prior":
            assert_array_equal(clf.predict_proba([X[0]]),
                               clf.class_prior_.reshape((1, -1)))
        else:
            assert_array_equal(clf.predict_proba([X[0]]),
                               clf.class_prior_.reshape((1, -1)) > 0.5) 
Example #24
Source File: test_optimization.py    From sports-betting with MIT License 6 votes vote down vote up
def test_apply_backtesting():
    """Test backtesting function."""

    # Input data
    bettor = Bettor(classifier=DummyClassifier(), targets=['D', 'H'])
    param_grid = {'classifier__strategy': ['uniform', 'stratified']}
    risk_factors = [0.0, 0.2, 0.4]
    random_state = 0
    X = np.random.random((100, 2))
    scores = np.repeat([1, 0], 50), np.repeat([0, 1], 50), np.repeat([1, 0], 50), np.repeat([0, 1], 50)
    odds = np.repeat([2.0, 2.0], 100).reshape(-1, 2)
    cv = TimeSeriesSplit(2, 0.3)
    n_runs = 3
    n_jobs = -1

    # Output
    results = apply_backtesting(bettor, param_grid, risk_factors, X, scores, odds, cv, random_state, n_runs, n_jobs)

    assert list(results.columns) == ['parameters', 'risk_factor', 'coverage', 'mean_yield', 'std_yield', 'std_mean_yield']
    assert len(results) == len(risk_factors) * len(ParameterGrid(param_grid)) 
Example #25
Source File: test_optimization.py    From sports-betting with MIT License 6 votes vote down vote up
def test_fit_bet():
    """Test fit and bet function."""

    # Input data
    bettor = Bettor(classifier=DummyClassifier(), targets=['D', 'H'])
    params = {'classifier__strategy': 'constant', 'classifier__constant': 'H'}
    risk_factors = [0.0]
    random_state = 0
    X = np.random.random((100, 2))
    scores = np.repeat([1, 0], 50), np.repeat([0, 1], 50), np.repeat([1, 0], 50), np.repeat([0, 1], 50)
    train_indices, test_indices = np.arange(0, 25), np.arange(25, 100)
    odds = np.repeat([2.0, 2.0], 100).reshape(-1, 2)

    # Output
    data = fit_bet(bettor, params, risk_factors, random_state, X, scores, odds, train_indices, test_indices)
    
    # Expected output
    expected_yields = np.concatenate([np.repeat(1.0, 25), np.repeat(-1.0, 50)])
    expected_data = pd.DataFrame([[str(params), random_state, risk_factors[0], expected_yields]], columns=['parameters', 'experiment', 'risk_factor', 'yields'])
    
    pd.testing.assert_frame_equal(expected_data, data) 
Example #26
Source File: rq1_cnn_2d.py    From DeepLearningSmells with Apache License 2.0 6 votes vote down vote up
def measure_performance_dummy_classifier():
    outfile = get_out_file("dummy_classifier")
    write_result(outfile, "smell,auc,precision,recall,f1,average_precision\n")
    for smell in smell_list:
        data_path = os.path.join(os.path.join(TOKENIZER_OUT_PATH, smell), DIM)
        input_data = get_all_data(data_path, smell)
        # clf = DummyClassifier(strategy='stratified', random_state=0)
        clf = DummyClassifier(strategy='most_frequent', random_state=0)
        inverted_train_labels = inputs.invert_labels(input_data.train_labels)

        clf.fit(input_data.train_data, inverted_train_labels)
        # clf.fit(input_data.train_data, input_data.train_labels)
        y_pred = clf.predict(input_data.eval_data)


        auc, precision, recall, f1, average_precision, fpr, tpr = \
            metrics_util.get_all_metrics_(input_data.eval_labels, y_pred)

        write_result(outfile, smell +"," + str(auc) +"," + str(precision) +"," + str(recall) +"," + str(f1) +"," + str(average_precision) + "\n") 
Example #27
Source File: test_optimization.py    From sports-betting with MIT License 5 votes vote down vote up
def test_bettor_fit():
    """Test fit method of bettor."""

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['H', 'D']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(bettor.classifier_.classes_, np.array(['-', 'D', 'H']))

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(bettor.classifier_.classes_, np.array(['over_2.5', 'under_2.5']))

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(np.unique(bettor.classifier_.classes_), np.array(['A', 'over_2.5'])) 
Example #28
Source File: test_dummy.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_dummy_classifier_on_nan_value():
    X = [[np.NaN]]
    y = [1]
    y_expected = [1]
    clf = DummyClassifier()
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert_array_equal(y_pred, y_expected) 
Example #29
Source File: test_optimization.py    From sports-betting with MIT License 5 votes vote down vote up
def test_bettor_predict():
    """Test predict method of bettor."""

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['H', 'D']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(np.unique(bettor.predict(X)), np.array(['-', 'D', 'H']))

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(np.unique(bettor.predict(X)), np.array(['over_2.5', 'under_2.5']))

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
    np.testing.assert_array_equal(np.unique(bettor.predict(X)), np.array(['A', 'over_2.5'])) 
Example #30
Source File: test_optimization.py    From sports-betting with MIT License 5 votes vote down vote up
def test_bettor_predict_proba():
    """Test predict probabilities method of bettor."""
    
    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['H', 'D']).fit(X, score1, score2, odds)
    assert bettor.predict_proba(X).shape == (30, 3)

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'under_2.5']).fit(X, score1, score2, odds)
    assert bettor.predict_proba(X).shape == (30, 2)

    bettor = Bettor(classifier=DummyClassifier(random_state=0), targets=['over_2.5', 'A']).fit(X, score1, score2, odds)
    assert bettor.predict_proba(X).shape == (30, 2)