Python xgboost.sklearn.XGBClassifier() Examples
The following are 6
code examples of xgboost.sklearn.XGBClassifier().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
xgboost.sklearn
, or try the search function
.
Example #1
Source File: classifier.py From Video-Highlight-Detection with MIT License | 7 votes |
def _build_model(self,model_name,params=None): if params==None: if model_name=='xgb': self.model=XGBClassifier(n_estimators=100,learning_rate=0.02) elif model_name=='svm': kernel_function=chi2_kernel if not (self.model_kernel=='linear' or self.model_kernel=='rbf') else self.model_kernel self.model=SVC(C=1,kernel=kernel_function,gamma=1,probability=True) elif model_name=='lr': self.model=LR(C=1,penalty='l1',tol=1e-6) else: if model_name=='xgb': self.model=XGBClassifier(n_estimators=1000,learning_rate=0.02,**params) elif model_name=='svm': self.model=SVC(C=1,kernel=kernel_function,gamma=1,probability=True) elif model_name=='lr': self.model=LR(C=1,penalty='l1',tol=1e-6) log.l.info('=======> built the model {} done'.format(self.model_name))
Example #2
Source File: tune_xgboost.py From jh-kaggle-util with Apache License 2.0 | 5 votes |
def modelfit(params,x,y): #Fit the algorithm on the data print("fit") alg = XGBClassifier(**params) alg.fit(x,y,verbose=True) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) print(feat_imp)
Example #3
Source File: trainclasses.py From predictatops with MIT License | 5 votes |
def init_XGBoost_withSettings(self): """ Takes in Returns """ ########################## Initial Machine Learning Using XGBoost classification ########################## ########################## Optional model = XGBClassifier( max_depth=3, objective="multi:softmax", # error evaluation for multiclass training num_class=5, n_gpus=0, n_jobs=-1 # gamma=gamma, # reg_alpha=reg_alpha, # max_depth=max_depth, # subsample=subsample, # colsample_bytree= colsample_bytree, # n_estimators= n_estimators, # learning_rate= learning_rate, # min_child_weight= min_child_weight, # n_jobs=n_jobs # params ) print( " init_XGBoost_withSettings function has been called which initiates a XGBoost classifier with settings of : max_depth=4,objective='multi:softmax', training,num_class=5,n_gpus= 0,n_jobs=8" ) print("model coming out of init_XGBoost_withSettings() function is:", model) return model
Example #4
Source File: ml_workflow.py From Crypto_trading_robot with MIT License | 5 votes |
def gridsearch_run(X_train, y_train): # Default classified which will be tuned xgb_model = XGBClassifier( n_estimators=100, max_depth=8, min_child_weight=1, gamma=0, subsample=0.5, colsample_bytree=0.5, learning_rate=0.1, # ok for Gridsearch objective='multi:softprob', silent=True, nthread=1, num_class=3 ) # A parameter grid for XGBoost params = set_gridsearch_params() clf = GridSearchCV(xgb_model, params, cv=list(KFold(n_splits=5, shuffle=True).split(X_train)), # at least 5 splits verbose=2, scoring='neg_log_loss', n_jobs=-1 ) grid_result = clf.fit(X_train, y_train.values.ravel()) print("\n\nBest score: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] print("\nStats:") for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param)) ### Train - test and save
Example #5
Source File: ABuMLCreater.py From abu with GNU General Public License v3.0 | 5 votes |
def xgb_classifier(self, assign=True, **kwargs): """ 有监督学习分类器,默认使用: GBC(n_estimators=100) 通过**kwargs即关键字参数透传GBC(**kwargs),即: GBC(**kwargs) 注意导入使用: try: from xgboost.sklearn import XGBClassifier as GBC except ImportError: from sklearn.ensemble import GradientBoostingClassifier as GBC :param assign: 是否保存实例后的分类器对象,默认True,self.clf = clf :param kwargs: 有参数情况下初始化: GBC(n_estimators=100) 无参数情况下初始化: GBC(**kwargs) :return: 实例化的GBC对象 """ if kwargs is not None and len(kwargs) > 0: clf = GBC(**kwargs) else: clf = GBC(n_estimators=100) if assign: self.clf = clf return clf
Example #6
Source File: xgb_tune.py From ml-parameter-optimization with MIT License | 4 votes |
def tune_params(self): """ tune specified (and default) parameters """ self._start_time = time.time() self.default_params() # set default parameters self.score_init() # set initial score iround = 0 while iround<self.max_rounds: print('\nLearning rate for iteration %i: %f.' %(iround+1,self._params['learning_rate'])) while self._step<5: istep_time = time.time() if self._step==0: xgb = XGBClassifier(**self._params) self.get_n_estimators(xgb) else: self.apply_gridsearch(XGBClassifier(**self._params)) self.print_progress(istep_time,iround=iround,max_rounds=self.max_rounds) # print params and performance self._step+=1 # store model each iteration self._params_iround[iround] = {} for key,value in self._params.items(): self._params_iround[iround][key] = value self._params_iround[iround]['model_score'] = self._temp_score # check if max_runtime is breached if (time.time() - self._start_time) > self.max_runtime: print('Tuning stopped after iteration %i. Max runtime of %i sec exceeded.' %(iround+1,self.max_runtime)) return # early stopping criterium if (iround>=self.running_rounds and self.best_score==self._params_iround[max(0,iround-self.running_rounds)]['model_score']): print('Tuning stopped after iteration %i. No model improvement for %i consecutive rounds.' %(iround+1,self.running_rounds)) return # update learning rate and reset n_estimators for next iteration if iround<self.max_rounds-1: self.update_learning_rate() if self._stop_learning: print('Tuning stopped after iteration %i. Minimum learning rate %f reached.' %(iround+1,self._min_learning_rate)) return self._step=0 iround+=1 return