Python matplotlib.colors.Normalize() Examples
The following are 30
code examples of matplotlib.colors.Normalize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.colors
, or try the search function
.
Example #1
Source File: __init__.py From dinosar with MIT License | 8 votes |
def make_coherence_cmap( mapname="inferno", vmin=1e-5, vmax=1, ncolors=64, outname="coherence-cog.cpt" ): """Write default colormap (coherence-cog.cpt) for isce coherence images. Parameters ---------- mapname : str matplotlib colormap name vmin : float data value mapped to lower end of colormap vmax : float data value mapped to upper end of colormap ncolors : int number of discrete mapped values between vmin and vmax """ cmap = plt.get_cmap(mapname) cNorm = colors.Normalize(vmin=vmin, vmax=vmax) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap) vals = np.linspace(vmin, vmax, ncolors, endpoint=True) write_cmap(outname, vals, scalarMap) return outname
Example #2
Source File: axes3d.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _shade_colors(self, color, normals): ''' Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. ''' shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) if proj3d.mod(n) else np.nan for n in normals]) mask = ~np.isnan(shade) if len(shade[mask]) > 0: norm = Normalize(min(shade[mask]), max(shade[mask])) shade[~mask] = min(shade[mask]) color = mcolors.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors
Example #3
Source File: xlsxpandasformatter.py From xlsxpandasformatter with MIT License | 6 votes |
def convert_colormap_to_hex(cmap, x, vmin=0, vmax=1): """ Example:: >>> seaborn.palplot(seaborn.color_palette("RdBu_r", 7)) >>> colorMapRGB = seaborn.color_palette("RdBu_r", 61) >>> colormap = seaborn.blend_palette(colorMapRGB, as_cmap=True, input='rgb') >>> [convert_colormap_to_hex(colormap, x, vmin=-2, vmax=2) for x in range(-2, 3)] ['#09386d', '#72b1d3', '#f7f6f5', '#e7866a', '#730421'] """ norm = colors.Normalize(vmin, vmax) color_rgb = plt.cm.get_cmap(cmap)(norm(x)) color_hex = colors.rgb2hex(color_rgb) return color_hex
Example #4
Source File: plot_functions.py From ADNC with Apache License 2.0 | 6 votes |
def plot_weightings(self, weightings, ax, name='Weightings', mode='log', color='YlOrRd'): assert weightings.shape.__len__() == 2, "plot weightings: need 2D matrix as data" if mode == 'log': norm = colors.LogNorm(vmin=1e-3, vmax=1) else: norm = colors.Normalize(vmin=0, vmax=1) img = ax.imshow(np.transpose(weightings), interpolation='nearest', norm=norm, cmap=color, aspect='auto') # gist_stern ax.set_adjustable('box-forced') if self.title: ax.set_ylabel(name, size=self.text_size) if self.legend: box = ax.get_position() ax.set_position([box.x0 - 0.001, box.y0, box.width, box.height]) axColor = plt.axes([box.x0 + box.width + 0.005, box.y0, 0.005, box.height]) cb = plt.colorbar(img, cax=axColor, orientation="vertical") for l in cb.ax.yaxis.get_ticklabels(): l.set_size(self.text_size)
Example #5
Source File: mpl_camera.py From ctapipe with BSD 3-Clause "New" or "Revised" License | 6 votes |
def norm(self, norm): if norm == "lin": self.pixels.norm = Normalize() elif norm == "log": self.pixels.norm = LogNorm() self.pixels.autoscale() # this is to handle matplotlib bug #5424 elif norm == "symlog": self.pixels.norm = SymLogNorm(linthresh=1.0) self.pixels.autoscale() elif isinstance(norm, Normalize): self.pixels.norm = norm else: raise ValueError( "Unsupported norm: '{}', options are 'lin'," "'log','symlog', or a matplotlib Normalize object".format(norm) ) self.update(force=True) self.pixels.autoscale()
Example #6
Source File: display.py From pycpt with GNU General Public License v2.0 | 6 votes |
def plot_colormap(cmap, continuous=True, discrete=True, ndisc=9): """Make a figure displaying the color map in continuous and/or discrete form """ nplots = int(continuous) + int(discrete) fig, axx = plt.subplots(figsize=(6,.5*nplots), nrows=nplots, frameon=False) axx = np.asarray(axx) i=0 if continuous: norm = mcolors.Normalize(vmin=0, vmax=1) ColorbarBase(axx.flat[i], cmap=cmap, norm=norm, orientation='horizontal') ; i+=1 if discrete: colors = cmap(np.linspace(0, 1, ndisc)) cmap_d = mcolors.ListedColormap(colors, name=cmap.name) norm = mcolors.BoundaryNorm(np.linspace(0, 1, ndisc+1), len(colors)) ColorbarBase(axx.flat[i], cmap=cmap_d, norm=norm, orientation='horizontal') for ax in axx.flat: ax.set_axis_off() fig.text(0.95, 0.5, cmap.name, va='center', ha='left', fontsize=12)
Example #7
Source File: stress_gui.py From fenics-topopt with MIT License | 6 votes |
def update(self, xPhys, u, title=None): """Plot to screen""" self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T) stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu) # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu) self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress))) stress_rgba = self.myColorMap.to_rgba(stress) stress_rgba[:, :, 3] = xPhys.reshape(-1, 1) self.stress_im.set_array(np.swapaxes( stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1)) self.fig.canvas.draw() self.fig.canvas.flush_events() if title is not None: plt.title(title) else: plt.xlabel("Max stress = {:.2f}".format(max(stress)[0])) plt.pause(0.01)
Example #8
Source File: axes3d.py From opticspy with MIT License | 6 votes |
def _shade_colors(self, color, normals): ''' Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. ''' shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) if proj3d.mod(n) else np.nan for n in normals]) mask = ~np.isnan(shade) if len(shade[mask]) > 0: norm = Normalize(min(shade[mask]), max(shade[mask])) shade[~mask] = min(shade[mask]) color = colorConverter.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors
Example #9
Source File: axes3d.py From Computable with MIT License | 6 votes |
def _shade_colors(self, color, normals): ''' Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. ''' shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) for n in normals]) mask = ~np.isnan(shade) if len(shade[mask]) > 0: norm = Normalize(min(shade[mask]), max(shade[mask])) color = colorConverter.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors
Example #10
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_Normalize(): norm = mcolors.Normalize() vals = np.arange(-10, 10, 1, dtype=float) _inverse_tester(norm, vals) _scalar_tester(norm, vals) _mask_tester(norm, vals) # Handle integer input correctly (don't overflow when computing max-min, # i.e. 127-(-128) here). vals = np.array([-128, 127], dtype=np.int8) norm = mcolors.Normalize(vals.min(), vals.max()) assert_array_equal(np.asarray(norm(vals)), [0, 1]) # Don't lose precision on longdoubles (float128 on Linux): # for array inputs... vals = np.array([1.2345678901, 9.8765432109], dtype=np.longdouble) norm = mcolors.Normalize(vals.min(), vals.max()) assert_array_equal(np.asarray(norm(vals)), [0, 1]) # and for scalar ones. eps = np.finfo(np.longdouble).resolution norm = plt.Normalize(1, 1 + 100 * eps) # This returns exactly 0.5 when longdouble is extended precision (80-bit), # but only a value close to it when it is quadruple precision (128-bit). assert 0 < norm(1 + 50 * eps) < 1
Example #11
Source File: plot_barycenter_fgw.py From POT with MIT License | 6 votes |
def graph_colors(nx_graph, vmin=0, vmax=7): cnorm = mcol.Normalize(vmin=vmin, vmax=vmax) cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis') cpick.set_array([]) val_map = {} for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items(): val_map[k] = cpick.to_rgba(v) colors = [] for node in nx_graph.nodes(): colors.append(val_map[node]) return colors ############################################################################## # Generate data # ------------- #%% circular dataset # We build a dataset of noisy circular graphs. # Noise is added on the structures by random connections and on the features by gaussian noise.
Example #12
Source File: plot.py From voxelmorph with GNU General Public License v3.0 | 6 votes |
def flow_legend(): """ show quiver plot to indicate how arrows are colored in the flow() method. https://stackoverflow.com/questions/40026718/different-colours-for-arrows-in-quiver-plot """ ph = np.linspace(0, 2*np.pi, 13) x = np.cos(ph) y = np.sin(ph) u = np.cos(ph) v = np.sin(ph) colors = np.arctan2(u, v) norm = Normalize() norm.autoscale(colors) # we need to normalize our colors array to match it colormap domain # which is [0, 1] colormap = cm.winter plt.figure(figsize=(6, 6)) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.quiver(x, y, u, v, color=colormap(norm(colors)), angles='xy', scale_units='xy', scale=1) plt.show()
Example #13
Source File: plot.py From neuron with GNU General Public License v3.0 | 6 votes |
def flow_legend(): """ show quiver plot to indicate how arrows are colored in the flow() method. https://stackoverflow.com/questions/40026718/different-colours-for-arrows-in-quiver-plot """ ph = np.linspace(0, 2*np.pi, 13) x = np.cos(ph) y = np.sin(ph) u = np.cos(ph) v = np.sin(ph) colors = np.arctan2(u, v) norm = Normalize() norm.autoscale(colors) # we need to normalize our colors array to match it colormap domain # which is [0, 1] colormap = cm.winter plt.figure(figsize=(6, 6)) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.quiver(x, y, u, v, color=colormap(norm(colors)), angles='xy', scale_units='xy', scale=1) plt.show()
Example #14
Source File: dal_ros_aml.py From dal with MIT License | 6 votes |
def update_gtl_plot(self,ax): # gtl = self.gt_likelihood.cpu().detach().numpy() gtl = self.gt_likelihood gtl, side = self.square_clock(gtl, self.grid_dirs) if self.obj_gtl == None: self.obj_gtl = ax.imshow(gtl,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Target Likelihood') else: self.obj_gtl.set_data(gtl) self.obj_gtl.set_norm(norm = cm.Normalize().autoscale(gtl))
Example #15
Source File: dal_ros_aml.py From dal with MIT License | 6 votes |
def update_prior_plot(self,ax): bel = np.copy(self.prior) bel,side = self.square_clock(bel, self.grid_dirs) if self.obj_bel_prior == None: self.obj_bel_prior = ax.imshow(bel,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Prior (%.3f)'%self.prior.max()) else: self.obj_bel_prior.set_data(bel) ax.set_title('Prior (%.3f)'%self.prior.max()) self.obj_bel_prior.set_norm(norm = cm.Normalize().autoscale(bel))
Example #16
Source File: dal_ros_aml.py From dal with MIT License | 6 votes |
def update_likely_plot(self,ax): lik = self.likelihood.cpu().detach().numpy() # if lik.min() == lik.max(): # lik *= 0 # lik -= lik.min() # lik /= lik.max() lik, side = self.square_clock(lik, self.grid_dirs) # lik=self.circular_placement(lik, self.grid_dirs) # lik = lik.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # lik = np.swapaxes(lik,0,1) # lik = lik.reshape(self.grid_rows, self.grid_dirs*self.grid_cols) # lik = np.concatenate((lik[0,:,:],lik[1,:,:],lik[2,:,:],lik[3,:,:]), axis=1) if self.obj_lik == None: self.obj_lik = ax.imshow(lik,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Likelihood from NN') else: self.obj_lik.set_data(lik) self.obj_lik.set_norm(norm = cm.Normalize().autoscale(lik))
Example #17
Source File: dal_ros_aml.py From dal with MIT License | 6 votes |
def update_likely_plot(self,ax): lik = self.likelihood.cpu().detach().numpy() # if lik.min() == lik.max(): # lik *= 0 # lik -= lik.min() # lik /= lik.max() lik, side = square_clock(lik, self.grid_dirs) # lik=self.circular_placement(lik, self.grid_dirs) # lik = lik.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # lik = np.swapaxes(lik,0,1) # lik = lik.reshape(self.grid_rows, self.grid_dirs*self.grid_cols) # lik = np.concatenate((lik[0,:,:],lik[1,:,:],lik[2,:,:],lik[3,:,:]), axis=1) if self.obj_lik == None: self.obj_lik = ax.imshow(lik,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Likelihood from NN') else: self.obj_lik.set_data(lik) self.obj_lik.set_norm(norm = cm.Normalize().autoscale(lik))
Example #18
Source File: dal.py From dal with MIT License | 6 votes |
def update_gtl_plot(self,ax): # gtl = self.gt_likelihood.cpu().detach().numpy() gtl = self.gt_likelihood gtl, side = square_clock(gtl, self.grid_dirs) if self.obj_gtl == None: self.obj_gtl = ax.imshow(gtl,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Target Likelihood') else: self.obj_gtl.set_data(gtl) self.obj_gtl.set_norm(norm = cm.Normalize().autoscale(gtl))
Example #19
Source File: dal.py From dal with MIT License | 6 votes |
def update_likely_plot(self,ax): lik = self.likelihood.cpu().detach().numpy() # if lik.min() == lik.max(): # lik *= 0 # lik -= lik.min() # lik /= lik.max() lik, side = square_clock(lik, self.grid_dirs) # lik=self.circular_placement(lik, self.grid_dirs) # lik = lik.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # lik = np.swapaxes(lik,0,1) # lik = lik.reshape(self.grid_rows, self.grid_dirs*self.grid_cols) # lik = np.concatenate((lik[0,:,:],lik[1,:,:],lik[2,:,:],lik[3,:,:]), axis=1) if self.obj_lik == None: self.obj_lik = ax.imshow(lik,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Likelihood from NN') else: self.obj_lik.set_data(lik) self.obj_lik.set_norm(norm = cm.Normalize().autoscale(lik))
Example #20
Source File: axes3d.py From matplotlib-4-abaqus with MIT License | 6 votes |
def _shade_colors(self, color, normals): ''' Shade *color* using normal vectors given by *normals*. *color* can also be an array of the same length as *normals*. ''' shade = np.array([np.dot(n / proj3d.mod(n), [-1, -1, 0.5]) for n in normals]) mask = ~np.isnan(shade) if len(shade[mask]) > 0: norm = Normalize(min(shade[mask]), max(shade[mask])) color = colorConverter.to_rgba_array(color) # shape of color should be (M, 4) (where M is number of faces) # shape of shade should be (M,) # colors should have final shape of (M, 4) alpha = color[:, 3] colors = (0.5 + norm(shade)[:, np.newaxis] * 0.5) * color colors[:, 3] = alpha else: colors = np.asanyarray(color).copy() return colors
Example #21
Source File: stress_gui.py From fenics-topopt with MIT License | 6 votes |
def update(self, xPhys, u, title=None): """Plot to screen""" self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T) stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu) # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu) self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress))) stress_rgba = self.myColorMap.to_rgba(stress) stress_rgba[:, :, 3] = xPhys.reshape(-1, 1) self.stress_im.set_array(np.swapaxes( stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1)) self.fig.canvas.draw() self.fig.canvas.flush_events() if title is not None: plt.title(title) else: plt.xlabel("Max stress = {:.2f}".format(max(stress)[0])) plt.pause(0.01)
Example #22
Source File: dal_ros_aml.py From dal with MIT License | 5 votes |
def update_belief_plot(self,ax): bel = self.belief.cpu().detach().numpy() # if bel.min() == bel.max(): # bel *= 0 # bel -= bel.min() # bel /= bel.max() bel,side = self.square_clock(bel, self.grid_dirs) #bel=self.circular_placement(bel, self.grid_dirs) # bel = bel.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # bel = np.swapaxes(bel,0,1) # bel = bel.reshape(self.grid_rows,self.grid_dirs*self.grid_cols) # bel = np.concatenate((bel[0,:,:],bel[1,:,:],bel[2,:,:],bel[3,:,:]), axis=1) if self.obj_bel == None: self.obj_bel = ax.imshow(bel,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) else: self.obj_bel.set_data(bel) ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) self.obj_bel.set_norm(norm = cm.Normalize().autoscale(bel))
Example #23
Source File: cm.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def set_norm(self, norm): """Set the normalization instance. Parameters ---------- norm : `.Normalize` """ if norm is None: norm = colors.Normalize() self.norm = norm self.changed()
Example #24
Source File: dal.py From dal with MIT License | 5 votes |
def update_belief_plot(self,ax): bel = self.belief.cpu().detach().numpy() # if bel.min() == bel.max(): # bel *= 0 # bel -= bel.min() # bel /= bel.max() bel,side = square_clock(bel, self.grid_dirs) #bel=self.circular_placement(bel, self.grid_dirs) # bel = bel.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # bel = np.swapaxes(bel,0,1) # bel = bel.reshape(self.grid_rows,self.grid_dirs*self.grid_cols) # bel = np.concatenate((bel[0,:,:],bel[1,:,:],bel[2,:,:],bel[3,:,:]), axis=1) if self.obj_bel == None: self.obj_bel = ax.imshow(bel,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) else: self.obj_bel.set_data(bel) ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) self.obj_bel.set_norm(norm = cm.Normalize().autoscale(bel))
Example #25
Source File: dal_ros_aml.py From dal with MIT License | 5 votes |
def update_belief_plot(self,ax): bel = self.belief.cpu().detach().numpy() # if bel.min() == bel.max(): # bel *= 0 # bel -= bel.min() # bel /= bel.max() bel,side = square_clock(bel, self.grid_dirs) #bel=self.circular_placement(bel, self.grid_dirs) # bel = bel.reshape(self.grid_rows*self.grid_dirs,self.grid_cols) # bel = np.swapaxes(bel,0,1) # bel = bel.reshape(self.grid_rows,self.grid_dirs*self.grid_cols) # bel = np.concatenate((bel[0,:,:],bel[1,:,:],bel[2,:,:],bel[3,:,:]), axis=1) if self.obj_bel == None: self.obj_bel = ax.imshow(bel,interpolation='nearest') ax.grid() ticks = np.linspace(0,self.grid_rows*side, side,endpoint=False)-0.5 ax.set_yticks(ticks) ax.set_xticks(ticks) ax.tick_params(axis='y', labelleft='off') ax.tick_params(axis='x', labelbottom='off') ax.tick_params(bottom="off", left="off") ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) else: self.obj_bel.set_data(bel) ax.set_title('Belief (%.3f)'%self.belief.cpu().detach().numpy().max()) self.obj_bel.set_norm(norm = cm.Normalize().autoscale(bel))
Example #26
Source File: mpl_camera.py From ctapipe with BSD 3-Clause "New" or "Revised" License | 5 votes |
def norm(self): """ The norm instance of the Display Possible values: - "lin": linear scale - "log": log scale (cannot have negative values) - "symlog": symmetric log scale (negative values are ok) - any matplotlib.colors.Normalize instance, e. g. PowerNorm(gamma=-2) """ return self.pixels.norm
Example #27
Source File: util.py From raster-deep-learning with Apache License 2.0 | 5 votes |
def get_cmap(N): color_norm = mcolors.Normalize(vmin=0, vmax=N-1) return cmx.ScalarMappable(norm=color_norm, cmap='Set3').to_rgba
Example #28
Source File: explore_mapper.py From mapper-tda with MIT License | 5 votes |
def _get_colors(self, dic, cmap_str='brg'): cNorm = colors.Normalize(vmin=min(self.filtered_values), vmax=max(self.filtered_values)) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=plt.get_cmap(cmap_str)) node_color_dic = {} for _, clusters in dic.items(): for node, indices in clusters.items(): mitjana = np.mean(self.filtered_values[indices]) node_color_dic[node] = scalarMap.to_rgba(mitjana) return node_color_dic, scalarMap
Example #29
Source File: art3d.py From opticspy with MIT License | 5 votes |
def zalpha(colors, zs): """Modify the alphas of the color list according to depth""" # FIXME: This only works well if the points for *zs* are well-spaced # in all three dimensions. Otherwise, at certain orientations, # the min and max zs are very close together. # Should really normalize against the viewing depth. colors = get_colors(colors, len(zs)) if zs.size > 0 : norm = Normalize(min(zs), max(zs)) sats = 1 - norm(zs) * 0.7 colors = [(c[0], c[1], c[2], c[3] * s) for c, s in zip(colors, sats)] return colors
Example #30
Source File: plot_functions.py From ADNC with Apache License 2.0 | 5 votes |
def plot_matrix(self, matrix, ax, name='Weightings', mode='norm', color='RdYlBu', zero_width=5, zero_add='zeros'): assert matrix.shape.__len__() == 3, "plot weightings: need 3D matrix as data" if mode == 'log': norm = colors.LogNorm(vmin=1e-8, vmax=0.1) elif mode == 'norm1': norm = colors.Normalize(vmin=0, vmax=1) else: norm = colors.Normalize(vmin=-1, vmax=1) if zero_add == 'zeros': matrix = np.concatenate([matrix, np.zeros([matrix.shape[0], matrix.shape[1], zero_width])], axis=2) matrix = np.transpose(matrix, axes=(0, 2, 1)) flat_matrix = np.reshape(matrix, [-1, matrix.shape[2]]) flat_matrix = np.concatenate([np.zeros([zero_width, flat_matrix.shape[1]]), flat_matrix], axis=0) else: matrix = np.concatenate([matrix, np.ones([matrix.shape[0], matrix.shape[1], zero_width])], axis=2) matrix = np.transpose(matrix, axes=(0, 2, 1)) flat_matrix = np.reshape(matrix, [-1, matrix.shape[2]]) flat_matrix = np.concatenate([np.ones([zero_width, flat_matrix.shape[1]]), flat_matrix], axis=0) img = ax.imshow(np.transpose(flat_matrix), aspect='auto', interpolation='nearest', norm=norm, cmap=color) ax.set_adjustable('box-forced') if self.title: ax.set_ylabel(name, size=self.text_size) if self.legend: box = ax.get_position() ax.set_position([box.x0 - 0.001, box.y0, box.width, box.height]) axColor = plt.axes([box.x0 + box.width + 0.005, box.y0, 0.005, box.height]) cb = plt.colorbar(img, cax=axColor, orientation="vertical") for l in cb.ax.yaxis.get_ticklabels(): l.set_size(self.text_size) tick_locator = ticker.MaxNLocator(nbins=3) cb.locator = tick_locator cb.update_ticks()