Python preprocessing.lenet_preprocessing() Examples

The following are 30 code examples of preprocessing.lenet_preprocessing(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module preprocessing , or try the search function .
Example #1
Source File: preprocessing_factory.py    From MAX-Object-Detector with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'mobilenet_v2': inception_preprocessing,
      'mobilenet_v2_035': inception_preprocessing,
      'mobilenet_v2_140': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_mobile': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #2
Source File: preprocessing_factory.py    From TwinGAN with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
      'danbooru': danbooru_preprocessing
  }
  if name is None or name == 'fully_connected':
    tf.logging.info('No preprocessing.')
    return None

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #3
Source File: preprocessing_factory.py    From Action_Recognition_Zoo with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #4
Source File: preprocessing_factory.py    From ECO-pytorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #5
Source File: preprocessing_factory.py    From Machine-Learning-with-TensorFlow-1.x with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #6
Source File: preprocessing_factory.py    From hands-detection with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #7
Source File: preprocessing_factory.py    From object_detection_kitti with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #8
Source File: preprocessing_factory.py    From MBMD with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #9
Source File: preprocessing_factory.py    From Optical-Flow-Guided-Feature with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
      'off': off_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #10
Source File: preprocessing_factory.py    From object_detection_with_tensorflow with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #11
Source File: preprocessing_factory.py    From SENet-tensorflow-slim with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #12
Source File: preprocessing_factory.py    From style_swap_tensorflow with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #13
Source File: preprocessing_factory.py    From nasnet-tensorflow with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #14
Source File: preprocessing_factory.py    From HumanRecognition with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #15
Source File: preprocessing_factory.py    From g-tensorflow-models with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'mobilenet_v2': inception_preprocessing,
      'mobilenet_v2_035': inception_preprocessing,
      'mobilenet_v2_140': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_mobile': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #16
Source File: preprocessing_factory.py    From g-tensorflow-models with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #17
Source File: preprocessing_factory.py    From models with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #18
Source File: preprocessing_factory.py    From motion-rcnn with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #19
Source File: preprocessing_factory.py    From mtl-ssl with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #20
Source File: preprocessing_factory.py    From multilabel-image-classification-tensorflow with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'mobilenet_v2': inception_preprocessing,
      'mobilenet_v2_035': inception_preprocessing,
      'mobilenet_v2_140': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_mobile': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #21
Source File: preprocessing_factory.py    From multilabel-image-classification-tensorflow with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #22
Source File: preprocessing_factory.py    From Gun-Detector with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #23
Source File: preprocessing_factory.py    From STORK with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #24
Source File: preprocessing_factory.py    From ctw-baseline with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #25
Source File: preprocessing_factory.py    From tf-pose with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #26
Source File: preprocessing_factory.py    From edafa with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'mobilenet_v2': inception_preprocessing,
      'mobilenet_v2_035': inception_preprocessing,
      'mobilenet_v2_140': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'pnasnet_mobile': inception_preprocessing,
      'pnasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #27
Source File: preprocessing_factory.py    From cv-tricks.com with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #28
Source File: preprocessing_factory.py    From garbage-object-detection-tensorflow with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #29
Source File: preprocessing_factory.py    From yolo_v2 with Apache License 2.0 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'nasnet_mobile': inception_preprocessing,
      'nasnet_large': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn 
Example #30
Source File: preprocessing_factory.py    From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License 4 votes vote down vote up
def get_preprocessing(name, is_training=False):
  """Returns preprocessing_fn(image, height, width, **kwargs).

  Args:
    name: The name of the preprocessing function.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    preprocessing_fn: A function that preprocessing a single image (pre-batch).
      It has the following signature:
        image = preprocessing_fn(image, output_height, output_width, ...).

  Raises:
    ValueError: If Preprocessing `name` is not recognized.
  """
  preprocessing_fn_map = {
      'cifarnet': cifarnet_preprocessing,
      'inception': inception_preprocessing,
      'inception_v1': inception_preprocessing,
      'inception_v2': inception_preprocessing,
      'inception_v3': inception_preprocessing,
      'inception_v4': inception_preprocessing,
      'inception_resnet_v2': inception_preprocessing,
      'lenet': lenet_preprocessing,
      'mobilenet_v1': inception_preprocessing,
      'resnet_v1_50': vgg_preprocessing,
      'resnet_v1_101': vgg_preprocessing,
      'resnet_v1_152': vgg_preprocessing,
      'resnet_v1_200': vgg_preprocessing,
      'resnet_v2_50': vgg_preprocessing,
      'resnet_v2_101': vgg_preprocessing,
      'resnet_v2_152': vgg_preprocessing,
      'resnet_v2_200': vgg_preprocessing,
      'vgg': vgg_preprocessing,
      'vgg_a': vgg_preprocessing,
      'vgg_16': vgg_preprocessing,
      'vgg_19': vgg_preprocessing,
  }

  if name not in preprocessing_fn_map:
    raise ValueError('Preprocessing name [%s] was not recognized' % name)

  def preprocessing_fn(image, output_height, output_width, **kwargs):
    return preprocessing_fn_map[name].preprocess_image(
        image, output_height, output_width, is_training=is_training, **kwargs)

  return preprocessing_fn