Python pickle._Unpickler() Examples
The following are 21
code examples of pickle._Unpickler().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pickle
, or try the search function
.
Example #1
Source File: network_architectures.py From self-ensemble-visual-domain-adapt-photo with MIT License | 6 votes |
def _unpickle_from_path(path): # Oh... the joys of Py2 vs Py3 with open(path, 'rb') as f: if sys.version_info[0] == 2: return pickle.load(f) else: u = pickle._Unpickler(f) u.encoding = 'latin1' return u.load() # # # CUSTOM RESNET CLASS # #
Example #2
Source File: wrapper.py From ebonite with Apache License 2.0 | 6 votes |
def _get_non_pickle_io(self, obj): """ Checks if obj has non-Pickle IO and returns it :param obj: object to check :return: non-Pickle :class:`ModelIO` instance or None """ # avoid calling heavy analyzer machinery for "unknown" objects: # they are either non-models or callables if not isinstance(obj, self.known_types): return None # we couldn't import analyzer at top as it leads to circular import failure from ebonite.core.analyzer.model import ModelAnalyzer try: io = ModelAnalyzer._find_hook(obj)._wrapper_factory().io return None if isinstance(io, PickleModelIO) else io except ValueError: # non-model object return None # We couldn't use `EboniteUnpickler` here as it (in fact `dill`) subclasses `Unpickler` # `Unpickler`, unlike `_Unpickler`, doesn't support `load_build` overriding
Example #3
Source File: mnist.py From theanet with Apache License 2.0 | 5 votes |
def _load_mnist(): data_dir = os.path.dirname(os.path.abspath(__file__)) data_file = os.path.join(data_dir, "mnist.pkl.gz") print("Looking for data file: ", data_file) if not os.path.isfile(data_file): import urllib.request as url origin = 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' print('Downloading data from: ', origin) url.urlretrieve(origin, data_file) print('Loading MNIST data') f = gzip.open(data_file, 'rb') u = pickle._Unpickler(f) u.encoding = 'latin1' train_set, valid_set, test_set = u.load() f.close() train_x, train_y = train_set valid_x, valid_y = valid_set testing_x, testing_y = test_set training_x = np.vstack((train_x, valid_x)) training_y = np.concatenate((train_y, valid_y)) training_x = training_x.reshape((training_x.shape[0], 1, 28, 28)) testing_x = testing_x.reshape((testing_x.shape[0], 1, 28, 28)) return training_x, training_y, testing_x, testing_y
Example #4
Source File: helper.py From vmf_vae_nlp with MIT License | 5 votes |
def read_bin_file(fname): with open(fname, 'rb') as f: u = pkl._Unpickler(f) u.encoding = 'latin1' return u.load()
Example #5
Source File: utils.py From gae-pytorch with MIT License | 5 votes |
def load_data(dataset): # load the data: x, tx, allx, graph names = ['x', 'tx', 'allx', 'graph'] objects = [] for i in range(len(names)): ''' fix Pickle incompatibility of numpy arrays between Python 2 and 3 https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3 ''' with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf: u = pkl._Unpickler(rf) u.encoding = 'latin1' cur_data = u.load() objects.append(cur_data) # objects.append( # pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb'))) x, tx, allx, graph = tuple(objects) test_idx_reorder = parse_index_file( "data/ind.{}.test.index".format(dataset)) test_idx_range = np.sort(test_idx_reorder) if dataset == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range( min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] features = torch.FloatTensor(np.array(features.todense())) adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) return adj, features
Example #6
Source File: dataset.py From Searching-for-activation-functions with MIT License | 5 votes |
def load_data(self, file_name): with open(file_name, 'rb') as file: unpickler = pickle._Unpickler(file) unpickler.encoding = 'latin1' contents = unpickler.load() X, Y = np.asarray(contents['data'], dtype=np.float32), np.asarray(contents['labels']) one_hot = np.zeros((Y.size, Y.max() + 1)) one_hot[np.arange(Y.size), Y] = 1 return X, one_hot
Example #7
Source File: fc100.py From learn2learn with MIT License | 5 votes |
def __init__(self, root, mode='train', transform=None, target_transform=None, download=False): super(FC100, self).__init__() self.root = os.path.expanduser(root) os.makedirs(self.root, exist_ok=True) self.transform = transform self.target_transform = target_transform if mode not in ['train', 'validation', 'test']: raise ValueError('mode must be train, validation, or test.') self.mode = mode self._bookkeeping_path = os.path.join(self.root, 'fc100-bookkeeping-' + mode + '.pkl') if not self._check_exists() and download: self.download() short_mode = 'val' if mode == 'validation' else mode fc100_path = os.path.join(self.root, 'FC100_' + short_mode + '.pickle') with open(fc100_path, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' archive = u.load() self.images = archive['data'] self.labels = archive['labels']
Example #8
Source File: mnist.py From Aurora with Apache License 2.0 | 5 votes |
def _load_data(self): script_dir = os.path.dirname(__file__) mnist_file = os.path.join(os.path.join(script_dir, 'data'), 'mnist.pkl.gz') with gzip.open(mnist_file, 'rb') as mnist_file: u = pickle._Unpickler(mnist_file) u.encoding = 'latin1' train, val, test = u.load() return train, val, test
Example #9
Source File: mixture.py From hat with MIT License | 5 votes |
def __init__(self, root, train=True,transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.filename = "notmnist.zip" self.url = "https://github.com/nkundiushuti/notmnist_convert/blob/master/notmnist.zip?raw=true" fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) self.download() training_file = 'notmnist_train.pkl' testing_file = 'notmnist_test.pkl' if train: with open(os.path.join(root,training_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # train = u.load() train = pickle.load(f) self.data = train['features'].astype(np.uint8) self.labels = train['labels'].astype(np.uint8) else: with open(os.path.join(root,testing_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # test = u.load() test = pickle.load(f) self.data = test['features'].astype(np.uint8) self.labels = test['labels'].astype(np.uint8)
Example #10
Source File: mixture.py From hat with MIT License | 5 votes |
def __init__(self, root, train=True,transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.filename = "facescrub_100.zip" self.url = "https://github.com/nkundiushuti/facescrub_subset/blob/master/data/facescrub_100.zip?raw=true" fpath=os.path.join(root,self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) self.download() training_file = 'facescrub_train_100.pkl' testing_file = 'facescrub_test_100.pkl' if train: with open(os.path.join(root,training_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # train = u.load() train = pickle.load(f) self.data = train['features'].astype(np.uint8) self.labels = train['labels'].astype(np.uint8) """ print(self.data.shape) print(self.data.mean()) print(self.data.std()) print(self.labels.max()) #""" else: with open(os.path.join(root,testing_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # test = u.load() test = pickle.load(f) self.data = test['features'].astype(np.uint8) self.labels = test['labels'].astype(np.uint8)
Example #11
Source File: util.py From DSD-SATN with Apache License 2.0 | 5 votes |
def read_pkl_coding(name = '../data/info.pkl'): with open(name, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' p = u.load() return p
Example #12
Source File: tiered_imagenet.py From SSL-FEW-SHOT with MIT License | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data
Example #13
Source File: train.py From MHE with MIT License | 5 votes |
def unpickle(file): with open(file, 'rb') as fo: u = pickle._Unpickler(fo) u.encoding = 'latin1' dict = u.load() return dict
Example #14
Source File: file_handlers.py From Conditional-Batch-Norm with MIT License | 5 votes |
def pickle_loader(file_path, gz=False): open_fct = open if gz: open_fct = gzip.open with open_fct(file_path, "rb") as f: if sys.version_info > (3, 0): # Workaround to load pickle data python2 -> python3 u = pickle._Unpickler(f) u.encoding = 'latin1' return u.load() else: return pickle.load(f)
Example #15
Source File: tiered_imagenet.py From FEAT with MIT License | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data
Example #16
Source File: mixture.py From UCB with MIT License | 5 votes |
def __init__(self, root, train=True,transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.filename = "notmnist.zip" self.url = "https://github.com/nkundiushuti/notmnist_convert/blob/master/notmnist.zip?raw=true" fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) self.download() training_file = 'notmnist_train.pkl' testing_file = 'notmnist_test.pkl' if train: with open(os.path.join(root,training_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # train = u.load() train = pickle.load(f) self.data = train['features'].astype(np.uint8) self.labels = train['labels'].astype(np.uint8) else: with open(os.path.join(root,testing_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # test = u.load() test = pickle.load(f) self.data = test['features'].astype(np.uint8) self.labels = test['labels'].astype(np.uint8)
Example #17
Source File: mixture.py From UCB with MIT License | 5 votes |
def __init__(self, root, train=True,transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.filename = "facescrub_100.zip" self.url = "https://github.com/nkundiushuti/facescrub_subset/blob/master/data/facescrub_100.zip?raw=true" fpath=os.path.join(root,self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) self.download() training_file = 'facescrub_train_100.pkl' testing_file = 'facescrub_test_100.pkl' if train: with open(os.path.join(root,training_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # train = u.load() train = pickle.load(f) self.data = train['features'].astype(np.uint8) self.labels = train['labels'].astype(np.uint8) """ print(self.data.shape) print(self.data.mean()) print(self.data.std()) print(self.labels.max()) #""" else: with open(os.path.join(root,testing_file),'rb') as f: # u = pickle._Unpickler(f) # u.encoding = 'latin1' # test = u.load() test = pickle.load(f) self.data = test['features'].astype(np.uint8) self.labels = test['labels'].astype(np.uint8)
Example #18
Source File: FC100.py From MetaOptNet with Apache License 2.0 | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data
Example #19
Source File: mini_imagenet.py From MetaOptNet with Apache License 2.0 | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data
Example #20
Source File: CIFAR_FS.py From MetaOptNet with Apache License 2.0 | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data
Example #21
Source File: tiered_imagenet.py From MetaOptNet with Apache License 2.0 | 5 votes |
def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data