Python datasets.dataset_factory.get_dataset() Examples
The following are 30
code examples of datasets.dataset_factory.get_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets.dataset_factory
, or try the search function
.
Example #1
Source File: export_inference_graph.py From nasnet-tensorflow with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, # num_classes=(dataset.num_classes - FLAGS.labels_offset), num_classes=5, is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #2
Source File: export_inference_graph.py From CVTron with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #3
Source File: eval_seglink.py From seglink with GNU General Public License v3.0 | 6 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.eval_image_height, FLAGS.eval_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) config.init_config(image_shape, batch_size = 1, seg_conf_threshold = FLAGS.seg_conf_threshold, link_conf_threshold = FLAGS.link_conf_threshold, train_with_ignored = FLAGS.train_with_ignored, seg_loc_loss_weight = FLAGS.seg_loc_loss_weight, link_cls_loss_weight = FLAGS.link_cls_loss_weight, ) util.proc.set_proc_name('eval_' + FLAGS.model_name + '_' + FLAGS.dataset_name ) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset, print_to_file = False) return dataset
Example #4
Source File: export_inference_graph.py From ctw-baseline with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #5
Source File: export_inference_graph.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) if FLAGS.quantize: tf.contrib.quantize.create_eval_graph() graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #6
Source File: export_inference_graph.py From mtl-ssl with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #7
Source File: export_inference_graph.py From motion-rcnn with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #8
Source File: export_inference_graph.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #9
Source File: export_inference_graph.py From edafa with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) if FLAGS.quantize: tf.contrib.quantize.create_eval_graph() graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #10
Source File: export_inference_graph.py From DOTA_models with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) if hasattr(network_fn, 'default_image_size'): image_size = network_fn.default_image_size else: image_size = FLAGS.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[1, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #11
Source File: export_inference_graph.py From yolo_v2 with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #12
Source File: export_inference_graph.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #13
Source File: export_inference_graph.py From Gun-Detector with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #14
Source File: export_inference_graph.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #15
Source File: export_inference_graph.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #16
Source File: export_inference_graph.py From object_detection_with_tensorflow with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #17
Source File: export_inference_graph.py From MBMD with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #18
Source File: export_inference_graph.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #19
Source File: export_inference_graph.py From tumblr-emotions with Apache License 2.0 | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'validation', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) if hasattr(network_fn, 'default_image_size'): image_size = network_fn.default_image_size else: image_size = FLAGS.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[1, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #20
Source File: image_generation.py From TwinGAN with Apache License 2.0 | 6 votes |
def _select_dataset(self): """Selects and returns the dataset used for training/eval. :return: One ore more slim.dataset.Dataset. """ dataset = super(GanModel, self)._select_dataset() if FLAGS.unpaired_target_dataset_name: target_dataset = dataset_factory.get_dataset( FLAGS.unpaired_target_dataset_name, FLAGS.dataset_split_name, FLAGS.unpaired_target_dataset_dir) return (dataset, target_dataset) else: return dataset ###################### # Select the network # ######################
Example #21
Source File: model_inheritor.py From TwinGAN with Apache License 2.0 | 6 votes |
def _select_dataset(self): """Selects and returns the dataset used for training/eval. :return: One ore more slim.dataset.Dataset. """ dataset = dataset_factory.get_dataset( FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) assert dataset.num_samples >= FLAGS.batch_size self.num_samples = dataset.num_samples if hasattr(dataset, 'num_classes'): self.num_classes = dataset.num_classes else: self.num_classes = 0 tf.logging.info('dataset %s number of classes:%d ,number of samples:%d' % (FLAGS.dataset_name, self.num_classes, self.num_samples)) return dataset ###################### # Select the network # ######################
Example #22
Source File: export_inference_graph.py From Machine-Learning-with-TensorFlow-1.x with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[FLAGS.batch_size, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #23
Source File: export_inference_graph.py From hands-detection with MIT License | 6 votes |
def main(_): if not FLAGS.output_file: raise ValueError('You must supply the path to save to with --output_file') tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default() as graph: dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train', FLAGS.dataset_dir) network_fn = nets_factory.get_network_fn( FLAGS.model_name, num_classes=(dataset.num_classes - FLAGS.labels_offset), is_training=FLAGS.is_training) image_size = FLAGS.image_size or network_fn.default_image_size placeholder = tf.placeholder(name='input', dtype=tf.float32, shape=[1, image_size, image_size, 3]) network_fn(placeholder) graph_def = graph.as_graph_def() with gfile.GFile(FLAGS.output_file, 'wb') as f: f.write(graph_def.SerializeToString())
Example #24
Source File: mobilenet_v1_eval.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch( tensors=[image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) return images, labels
Example #25
Source File: mobilenet_v1_eval.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch( tensors=[image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) return images, labels
Example #26
Source File: mobilenet_v1_train.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def imagenet_input(is_training): """Data reader for imagenet. Reads in imagenet data and performs pre-processing on the images. Args: is_training: bool specifying if train or validation dataset is needed. Returns: A batch of images and labels. """ if is_training: dataset = dataset_factory.get_dataset('imagenet', 'train', FLAGS.dataset_dir) else: dataset = dataset_factory.get_dataset('imagenet', 'validation', FLAGS.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=is_training, common_queue_capacity=2 * FLAGS.batch_size, common_queue_min=FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image_preprocessing_fn = preprocessing_factory.get_preprocessing( 'mobilenet_v1', is_training=is_training) image = image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size) images, labels = tf.train.batch( [image, label], batch_size=FLAGS.batch_size, num_threads=4, capacity=5 * FLAGS.batch_size) labels = slim.one_hot_encoding(labels, FLAGS.num_classes) return images, labels
Example #27
Source File: checktfrecords.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def __get_images_labels_bboxes(self): dataset = dataset_factory.get_dataset( self.dataset_name, self.dataset_split_name, self.dataset_dir) #make sure data is fetchd in sequence shuffle = False self.num_readers = 1 provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=shuffle, num_readers=self.num_readers, common_queue_capacity=30 * self.batch_size, common_queue_min=10 * self.batch_size) # Get for SSD network: image, labels, bboxes. [image, shape, format, filename, glabels, gbboxes,gdifficults] = provider.get(['image', 'shape', 'format','filename', 'object/label', 'object/bbox', 'object/difficult']) return image, shape, format, filename, glabels, gbboxes,gdifficults
Example #28
Source File: train_pixel_link.py From HUAWEIOCR-2019 with MIT License | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger( log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.load_config(FLAGS.train_dir) config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #29
Source File: slim_eval_test.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def __get_images_labels(self): dataset = dataset_factory.get_dataset( self.dataset_name, self.dataset_split_name, self.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, shuffle=False, common_queue_capacity=2 * self.batch_size, common_queue_min=self.batch_size) [image_raw, label] = provider.get(['image', 'label']) label -= self.labels_offset network_fn = nets_factory.get_network_fn( self.model_name, num_classes=(dataset.num_classes - self.labels_offset), is_training=False) preprocessing_name = self.preprocessing_name or self.model_name image_preprocessing_fn = preprocessing_factory.get_preprocessing( preprocessing_name, is_training=False) eval_image_size = self.eval_image_size or network_fn.default_image_size image = image_preprocessing_fn(image_raw, eval_image_size, eval_image_size) # Preprocess the image for display purposes. image_raw = tf.expand_dims(image_raw, 0) image_raw = tf.image.resize_images(image_raw, [eval_image_size, eval_image_size]) image_raw = tf.squeeze(image_raw) images, labels, image_raws = tf.train.batch( [image, label, image_raw], batch_size=self.batch_size, num_threads=self.num_preprocessing_threads, capacity=5 * self.batch_size) self.network_fn = network_fn self.dataset = dataset return images, labels,image_raws
Example #30
Source File: readfromtfrecords_batch_train.py From SSD_tensorflow_VOC with Apache License 2.0 | 5 votes |
def __get_images_labels(self): dataset = dataset_factory.get_dataset( self.dataset_name, self.dataset_split_name, self.dataset_dir) provider = slim.dataset_data_provider.DatasetDataProvider( dataset, num_readers=self.num_readers, common_queue_capacity=20 * self.batch_size, common_queue_min=10 * self.batch_size) [image, label] = provider.get(['image', 'label']) label -= self.labels_offset network_fn = nets_factory.get_network_fn( self.model_name, num_classes=(dataset.num_classes - self.labels_offset), weight_decay=self.weight_decay, is_training=True) train_image_size = self.train_image_size or network_fn.default_image_size preprocessing_name = self.preprocessing_name or self.model_name image_preprocessing_fn = preprocessing_factory.get_preprocessing( preprocessing_name, is_training=True) image = image_preprocessing_fn(image, train_image_size, train_image_size) images, labels = tf.train.batch( [image, label], batch_size=self.batch_size, num_threads=self.num_preprocessing_threads, capacity=5 * self.batch_size) labels = slim.one_hot_encoding( labels, dataset.num_classes - self.labels_offset) batch_queue = slim.prefetch_queue.prefetch_queue( [images, labels], capacity=2) images, labels = batch_queue.dequeue() return images, labels