Python input_data.read_data_sets() Examples
The following are 6
code examples of input_data.read_data_sets().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
input_data
, or try the search function
.
Example #1
Source File: main.py From variational-autoencoder with Apache License 2.0 | 7 votes |
def __init__(self): self.mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) self.n_samples = self.mnist.train.num_examples self.n_hidden = 500 self.n_z = 20 self.batchsize = 100 self.images = tf.placeholder(tf.float32, [None, 784]) image_matrix = tf.reshape(self.images,[-1, 28, 28, 1]) z_mean, z_stddev = self.recognition(image_matrix) samples = tf.random_normal([self.batchsize,self.n_z],0,1,dtype=tf.float32) guessed_z = z_mean + (z_stddev * samples) self.generated_images = self.generation(guessed_z) generated_flat = tf.reshape(self.generated_images, [self.batchsize, 28*28]) self.generation_loss = -tf.reduce_sum(self.images * tf.log(1e-8 + generated_flat) + (1-self.images) * tf.log(1e-8 + 1 - generated_flat),1) self.latent_loss = 0.5 * tf.reduce_sum(tf.square(z_mean) + tf.square(z_stddev) - tf.log(tf.square(z_stddev)) - 1,1) self.cost = tf.reduce_mean(self.generation_loss + self.latent_loss) self.optimizer = tf.train.AdamOptimizer(0.001).minimize(self.cost) # encoder
Example #2
Source File: input_data_permuted.py From rwa with BSD 3-Clause "New" or "Revised" License | 6 votes |
def read_data_sets(): basepath = '/'.join(__file__.split('/')[:-1]) import input_data data = input_data.read_data_sets(basepath+'/bin', one_hot=True) import os import numpy as np if not os.path.isfile(basepath+'/bin/permutation.npy'): indices = np.random.permutation(28**2) os.makedirs(basepath+'/bin', exist_ok=True) np.save(basepath+'/bin/permutation.npy', indices) else: indices = np.load(basepath+'/bin/permutation.npy') data.train.images[:,:] = data.train.images[:,indices] data.validation.images[:,:] = data.validation.images[:,indices] data.test.images[:,:] = data.test.images[:,indices] return data
Example #3
Source File: imif_digits.py From openimif with GNU General Public License v2.0 | 6 votes |
def train_and_save_model(self, data_location, save_location): # Our training data mnist = input_data.read_data_sets(data_location, one_hot=True) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = self.accuracy.eval(feed_dict={ self.x:batch[0], self.y_: batch[1], self.keep_prob: 1.0 }) print("step %d, training accuracy %g"%(i, train_accuracy)) self.train_step.run(feed_dict={self.x: batch[0], self.y_: batch[1], self.keep_prob: 0.5}) # Saves path save_path = saver.save(sess, save_location) print("Model saved in file: ", save_path) # Loads saved model
Example #4
Source File: imid_digits.py From openimif with GNU General Public License v2.0 | 6 votes |
def train_and_save_model(self): # Our training data mnist = input_data.read_data_sets('../data/MNIST_digits', one_hot=True) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = self.accuracy.eval(feed_dict={ self.x:batch[0], self.y_: batch[1], self.keep_prob: 1.0 }) print("step %d, training accuracy %g"%(i, train_accuracy)) self.train_step.run(feed_dict={self.x: batch[0], self.y_: batch[1], self.keep_prob: 0.5}) # Saves path save_path = saver.save(sess, "../trained_models/mnist_digits.ckpt") print("Model saved in file: ", save_path) # Loads saved model
Example #5
Source File: mnist_fully_connected.py From cocob with Apache License 2.0 | 4 votes |
def main(_): # Import data mnist = input_data.read_data_sets('data', one_hot=True, validation_size=0) # Create the model x = tf.placeholder(tf.float32, [None, 784]) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) W_fc1 = weight_variable([28*28, 1000]) b_fc1 = bias_variable([1000]) h_fc1 = tf.nn.relu(tf.matmul(x, W_fc1) + b_fc1) W_fc2 = weight_variable([1000, 1000]) b_fc2 = bias_variable([1000]) h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2) W_fc3 = weight_variable([1000, 10]) b_fc3 = bias_variable([10]) out = tf.matmul(h_fc2, W_fc3) + b_fc3 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=out)) train_step = cocob_optimizer.COCOB().minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(out, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(600*40): batch = mnist.train.next_batch(100) if i % 600 == 0: test_batch_size = 10000 batch_num = int(mnist.train.num_examples / test_batch_size) train_loss = 0 for j in range(batch_num): train_loss += cross_entropy.eval(feed_dict={x: mnist.train.images[test_batch_size*j:test_batch_size*(j+1), :], y_: mnist.train.labels[test_batch_size*j:test_batch_size*(j+1), :]}) train_loss /= batch_num test_err = 1-accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print('epoch %d, training cost %g, test error %g ' % (i/600, train_loss, test_err)) train_step.run(feed_dict={x: batch[0], y_: batch[1]})
Example #6
Source File: Digit-Recognizer.py From Digit-Recognizer with MIT License | 4 votes |
def main(): mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) data = mnist.train.next_batch(8000) train_x = data[0] Y = data[1] train_y = (np.arange(np.max(Y) + 1) == Y[:, None]).astype(int) mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) tb = mnist.train.next_batch(2000) Y_test = tb[1] X_test = tb[0] # 0.00002-92 # 0.000005-92, 93 when 200000 190500 d1 = Digit_Recognizer_LR.model(train_x.T, train_y.T, Y, X_test.T, Y_test, num_iters=1500, alpha=0.05, print_cost=True) w_LR = d1["w"] b_LR = d1["b"] d2 = Digit_Recognizer_NN.model_nn(train_x.T, train_y.T, Y, X_test.T, Y_test, n_h=100, num_iters=1500, alpha=0.05, print_cost=True) dims = [784, 100, 80, 50, 10] d3 = Digit_Recognizer_DL.model_DL(train_x.T, train_y.T, Y, X_test.T, Y_test, dims, alpha=0.5, num_iterations=1100, print_cost=True) cap = cv2.VideoCapture(0) while (cap.isOpened()): ret, img = cap.read() img, contours, thresh = get_img_contour_thresh(img) ans1 = '' ans2 = '' ans3 = '' if len(contours) > 0: contour = max(contours, key=cv2.contourArea) if cv2.contourArea(contour) > 2500: # print(predict(w_from_model,b_from_model,contour)) x, y, w, h = cv2.boundingRect(contour) # newImage = thresh[y - 15:y + h + 15, x - 15:x + w +15] newImage = thresh[y:y + h, x:x + w] newImage = cv2.resize(newImage, (28, 28)) newImage = np.array(newImage) newImage = newImage.flatten() newImage = newImage.reshape(newImage.shape[0], 1) ans1 = Digit_Recognizer_LR.predict(w_LR, b_LR, newImage) ans2 = Digit_Recognizer_NN.predict_nn(d2, newImage) ans3 = Digit_Recognizer_DL.predict(d3, newImage) x, y, w, h = 0, 0, 300, 300 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(img, "Logistic Regression : " + str(ans1), (10, 320), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(img, "Shallow Network : " + str(ans2), (10, 350), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(img, "Deep Network : " + str(ans3), (10, 380), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Frame", img) cv2.imshow("Contours", thresh) k = cv2.waitKey(10) if k == 27: break