Python config.DATA_DIR Examples
The following are 30
code examples of config.DATA_DIR().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: datasets.py From yolo_v2 with Apache License 2.0 | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #2
Source File: datasets.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #3
Source File: datasets.py From hands-detection with MIT License | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #4
Source File: create_manifest.py From python-sgx with GNU General Public License v3.0 | 6 votes |
def main(): args = parse_args() path = os.path.abspath(args.PATH) if path.endswith(".manifest.template"): if not os.path.isfile(path): sys.exit("Cannot find file %r" % path) manifest_templates = [path] else: manifest_templates = get_manifest_templates(path) for manifest_template in manifest_templates: manifest = manifest_template[:-9] with open(manifest_template) as f_template: with open(manifest, "w+") as f_manifest: for line in f_template: line = line.replace("$(DATA_DIR)", DATA_DIR) line = line.replace("$(CONFIG_DIR)", CONFIG_DIR) line = line.replace("$(RUNTIME)", RUNTIME) line = line.replace("$(PYTHON_VERSION)", PYTHON_VERSION) line = line.replace("$(LIBPROTOBUF_VERSION)", LIBPROTOBUF_VERSION) line = line.replace("$(TESTS_DIR)", TESTS_DIR) f_manifest.write(line)
Example #5
Source File: benchmark_empirical_kde.py From Conditional_Density_Estimation with MIT License | 6 votes |
def experiment(): logger.configure(log_directory=config.DATA_DIR, prefix=EXP_PREFIX, color='green') # 1) EUROSTOXX dataset = datasets.EuroStoxx50() result_df = run_benchmark_train_test_fit_cv_ml(dataset, model_dict, n_train_valid_splits=3, shuffle_splits=False, seed=22) # 2) for n_samples in [10000]: dataset = datasets.NCYTaxiDropoffPredict(n_samples=n_samples) df = run_benchmark_train_test_fit_cv_ml(dataset, model_dict, n_train_valid_splits=3, shuffle_splits=True, seed=22) result_df = pd.concat([result_df, df], ignore_index=True) # 3) UCI & NYC Taxi for dataset_class in [datasets.BostonHousing, datasets.Conrete, datasets.Energy]: dataset = dataset_class() df = run_benchmark_train_test_fit_cv_ml(dataset, model_dict, n_train_valid_splits=3, shuffle_splits=True, seed=22) result_df = pd.concat([result_df, df], ignore_index=True) logger.log('\n', str(result_df))
Example #6
Source File: datasets.py From object_detection_with_tensorflow with MIT License | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #7
Source File: datasets.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #8
Source File: datasets.py From models with Apache License 2.0 | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #9
Source File: datasets.py From Gun-Detector with Apache License 2.0 | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #10
Source File: datasets.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def read_MNIST(binarize=False): """Reads in MNIST images. Args: binarize: whether to use the fixed binarization Returns: x_train: 50k training images x_valid: 10k validation images x_test: 10k test images """ with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_BINARIZED), 'r') as f: (x_train, _), (x_valid, _), (x_test, _) = pickle.load(f) if not binarize: with gfile.FastGFile(os.path.join(config.DATA_DIR, config.MNIST_FLOAT), 'r') as f: x_train = np.load(f).reshape(-1, 784) return x_train, x_valid, x_test
Example #11
Source File: datasets.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #12
Source File: datasets.py From object_detection_with_tensorflow with MIT License | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #13
Source File: datasets.py From models with Apache License 2.0 | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #14
Source File: main.py From grocery with Apache License 2.0 | 5 votes |
def load_data(DATA_NAME): print('loading', DATA_NAME, 'data ...') myTrans = pd.read_csv(DATA_DIR + DATA_NAME + ".data.csv", encoding = 'latin1') myTrans['PID'] = myTrans['PID'].apply(lambda x : list(set(eval(x)))) myItem = pd.read_csv(DATA_DIR + DATA_NAME + ".meta.csv", encoding = 'latin1') n_item = len(myItem) n_user = myTrans['UID'].max() + 1 print('done!') print('interactions about', n_item, 'products and', n_user, 'users are loaded') return myTrans, myItem, n_item, n_user
Example #15
Source File: task2.py From ntua-slp-semeval2018 with MIT License | 5 votes |
def load_task2(dataset): data_file = os.path.join(DATA_DIR, "task2/us_{}.text".format(dataset)) label_file = os.path.join(DATA_DIR, "task2/us_{}.labels".format(dataset)) X = [] y = [] with open(data_file, 'r', encoding="utf-8") as dfile, \ open(label_file, 'r', encoding="utf-8") as lfile: for tweet, label in zip(dfile, lfile): X.append(tweet.rstrip()) y.append(int(label.rstrip())) return X, y
Example #16
Source File: main.py From tensorflow-DSMM with MIT License | 5 votes |
def get_train_valid_test_data(augmentation=False): # load data Q = load_question(params) dfTrain = load_train() dfTest = load_test() # train_features = load_feat("train") # test_features = load_feat("test") # params["num_features"] = train_features.shape[1] # load split with open(config.SPLIT_FILE, "rb") as f: train_idx, valid_idx = pkl.load(f) # validation if augmentation: dfDev = pd.read_csv(config.DATA_DIR + "/" + "dev_aug.csv") dfDev = downsample(dfDev) params["use_features"] = False params["augmentation_decay_steps"] = 50000 params["decay_steps"] = 50000 X_dev = get_model_data(dfDev, None, params) else: X_dev = get_model_data(dfTrain.loc[train_idx], None, params) X_valid = get_model_data(dfTrain.loc[valid_idx], None, params) # submit if augmentation: dfTrain = pd.read_csv(config.DATA_DIR + "/" + "train_aug.csv") dfTrain = downsample(dfTrain) params["use_features"] = False params["augmentation_decay_steps"] = 50000 params["decay_steps"] = 50000 X_train = get_model_data(dfTrain, None, params) else: X_train = get_model_data(dfTrain, None, params) X_test = get_model_data(dfTest, None, params) return X_dev, X_valid, X_train, X_test, Q
Example #17
Source File: datasets.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #18
Source File: datasets.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #19
Source File: datasets.py From hands-detection with MIT License | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #20
Source File: regularization_empirical.py From Conditional_Density_Estimation with MIT License | 5 votes |
def experiment(): logger.configure(log_directory=config.DATA_DIR, prefix=EXP_PREFIX, color='green') # 1) EUROSTOXX dataset = datasets.EuroStoxx50() result_df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=3, n_eval_seeds=5, shuffle_splits=False, n_folds=5, seed=22, n_jobs_inner=-1, n_jobc_outer=3) # 2) NYC Taxi for n_samples in [10000]: dataset = datasets.NCYTaxiDropoffPredict(n_samples=n_samples) df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=3, n_eval_seeds=5, shuffle_splits=True, n_folds=5, seed=22, n_jobs_inner=-1, n_jobc_outer=3) result_df = pd.concat([result_df, df], ignore_index=True) # 3) UCI for dataset_class in [datasets.BostonHousing, datasets.Conrete, datasets.Energy]: dataset = dataset_class() df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=3, n_eval_seeds=5, shuffle_splits=True, n_folds=5, seed=22, n_jobs_inner=-1, n_jobc_outer=3) result_df = pd.concat([result_df, df], ignore_index=True) logger.log('\n', str(result_df)) logger.log('\n', result_df.tolatex())
Example #21
Source File: benchmark_empirical.py From Conditional_Density_Estimation with MIT License | 5 votes |
def experiment(): logger.configure(log_directory=config.DATA_DIR, prefix=EXP_PREFIX, color='green') # 1) EUROSTOXX dataset = datasets.EuroStoxx50() result_df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=3, n_eval_seeds=5, shuffle_splits=False, n_folds=5, seed=22) # 2) NYC Taxi for n_samples in [10000]: dataset = datasets.NCYTaxiDropoffPredict(n_samples=n_samples) df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=3, n_eval_seeds=5, shuffle_splits=True, n_folds=5, seed=22, n_jobs_inner=-1, n_jobc_outer=2) result_df = pd.concat([result_df, df], ignore_index=True) # 3) UCI result_df = None for dataset_class in [datasets.BostonHousing, datasets.Conrete, datasets.Energy]: dataset = dataset_class() df = run_benchmark_train_test_fit_cv(dataset, model_dict, n_train_valid_splits=1, n_eval_seeds=5, shuffle_splits=True, n_folds=5, seed=22, n_jobs_inner=-1, n_jobc_outer=2) result_df = pd.concat([result_df, df], ignore_index=True) logger.log('\n', str(result_df))
Example #22
Source File: unittests_configrunner.py From Conditional_Density_Estimation with MIT License | 5 votes |
def test_store_load_configrunner_pipeline(self): logger.configure(log_directory=config.DATA_DIR, prefix=EXP_PREFIX) test_dir = os.path.join(logger.log_directory, logger.prefix) if os.path.exists(test_dir): shutil.rmtree(test_dir) keys_of_interest = ['task_name', 'estimator', 'simulator', 'n_observations', 'center_sampling_method', 'x_noise_std', 'y_noise_std', 'ndim_x', 'ndim_y', 'n_centers', "n_mc_samples", "n_x_cond", 'mean_est', 'cov_est', 'mean_sim', 'cov_sim', 'kl_divergence', 'hellinger_distance', 'js_divergence', 'x_cond', 'random_seed', "mean_sim", "cov_sim", "mean_abs_diff", "cov_abs_diff", "VaR_sim", "VaR_est", "VaR_abs_diff", "CVaR_sim", "CVaR_est", "CVaR_abs_diff", "time_to_fit"] conf_est, conf_sim, observations = question1() conf_runner = ConfigRunner(EXP_PREFIX, conf_est, conf_sim, observations=observations, keys_of_interest=keys_of_interest, n_mc_samples=1 * 10 ** 2, n_x_cond=5, n_seeds=5) conf_runner.configs = random.sample(conf_runner.configs, NUM_CONFIGS_TO_TEST) conf_runner.run_configurations(dump_models=True, multiprocessing=False) results_from_pkl_file = dict({logger.load_pkl(RESULTS_FILE)}) """ check if model dumps have all been created """ dump_dir = os.path.join(logger.log_directory, logger.prefix, 'model_dumps') model_dumps_list = os.listdir(dump_dir) # get list of all model files model_dumps_list_no_suffix = [os.path.splitext(entry)[0] for entry in model_dumps_list] # remove suffix for conf in conf_runner.configs: self.assertTrue(conf['task_name'] in model_dumps_list_no_suffix) """ check if model dumps can be used successfully""" for model_dump_i in model_dumps_list: #tf.reset_default_graph() with tf.Session(graph=tf.Graph()): model = logger.load_pkl("model_dumps/"+model_dump_i) self.assertTrue(model) if model.ndim_x == 1 and model.ndim_y == 1: self.assertTrue(model.plot3d(show=False))
Example #23
Source File: train_source.py From pytorch-domain-adaptation with MIT License | 5 votes |
def create_dataloaders(batch_size): dataset = MNIST(config.DATA_DIR/'mnist', train=True, download=True, transform=Compose([GrayscaleToRgb(), ToTensor()])) shuffled_indices = np.random.permutation(len(dataset)) train_idx = shuffled_indices[:int(0.8*len(dataset))] val_idx = shuffled_indices[int(0.8*len(dataset)):] train_loader = DataLoader(dataset, batch_size=batch_size, drop_last=True, sampler=SubsetRandomSampler(train_idx), num_workers=1, pin_memory=True) val_loader = DataLoader(dataset, batch_size=batch_size, drop_last=False, sampler=SubsetRandomSampler(val_idx), num_workers=1, pin_memory=True) return train_loader, val_loader
Example #24
Source File: data.py From pytorch-domain-adaptation with MIT License | 5 votes |
def __init__(self, train=True): super(MNISTM, self).__init__() self.mnist = datasets.MNIST(config.DATA_DIR / 'mnist', train=train, download=True) self.bsds = BSDS500() # Fix RNG so the same images are used for blending self.rng = np.random.RandomState(42)
Example #25
Source File: data.py From pytorch-domain-adaptation with MIT License | 5 votes |
def __init__(self): image_folder = config.DATA_DIR / 'BSR/BSDS500/data/images' self.image_files = list(map(str, image_folder.glob('*/*.jpg')))
Example #26
Source File: datasets.py From Gun-Detector with Apache License 2.0 | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #27
Source File: get_dataset_mean_std.py From tf.fashionAI with Apache License 2.0 | 5 votes |
def get_dataset_mean_std(): all_sub_dirs = [] for split in config.SPLITS: if 'test' not in split: for cat in config.CATEGORIES: all_sub_dirs.append(os.path.join(config.DATA_DIR, split, 'Images', cat)) all_image_nums = 0 #print(all_sub_dirs) means = [0., 0., 0.] stds = [0., 0., 0.] for dirs in all_sub_dirs: all_images = tf.gfile.Glob(os.path.join(dirs, '*.jpg')) for image in all_images: np_image = imread(image, mode='RGB') if len(np_image.shape) < 3 or np_image.shape[-1] != 3: continue all_image_nums += 1 means[0] += np.mean(np_image[:, :, 0]) / 10000. means[1] += np.mean(np_image[:, :, 1]) / 10000. means[2] += np.mean(np_image[:, :, 2]) / 10000. stds[0] += np.std(np_image[:, :, 0]) / 10000. stds[1] += np.std(np_image[:, :, 1]) / 10000. stds[2] += np.std(np_image[:, :, 2]) / 10000. print([_*10000./all_image_nums for _ in means]) print([_*10000./all_image_nums for _ in stds]) print([_*10000./all_image_nums for _ in means]) print([_*10000./all_image_nums for _ in stds]) print(all_image_nums)
Example #28
Source File: datasets.py From yolo_v2 with Apache License 2.0 | 5 votes |
def read_omniglot(binarize=False): """Reads in Omniglot images. Args: binarize: whether to use the fixed binarization Returns: x_train: training images x_valid: validation images x_test: test images """ n_validation=1345 def reshape_data(data): return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran') omni_raw = scipy.io.loadmat(os.path.join(config.DATA_DIR, config.OMNIGLOT)) train_data = reshape_data(omni_raw['data'].T.astype('float32')) test_data = reshape_data(omni_raw['testdata'].T.astype('float32')) # Binarize the data with a fixed seed if binarize: np.random.seed(5) train_data = (np.random.rand(*train_data.shape) < train_data).astype(float) test_data = (np.random.rand(*test_data.shape) < test_data).astype(float) shuffle_seed = 123 permutation = np.random.RandomState(seed=shuffle_seed).permutation(train_data.shape[0]) train_data = train_data[permutation] x_train = train_data[:-n_validation] x_valid = train_data[-n_validation:] x_test = test_data return x_train, x_valid, x_test
Example #29
Source File: ConfigRunnerLogProb.py From Conditional_Density_Estimation with MIT License | 4 votes |
def __init__(self, exp_prefix, est_params, sim_params, observations, keys_of_interest, n_test_samples=10 ** 5, n_seeds=5, use_gpu=True): assert est_params and exp_prefix and sim_params and keys_of_interest assert observations.all() # convert to dicts to list of tuples if isinstance(est_params, dict): est_params = list(est_params.items()) if isinstance(sim_params, dict): sim_params = list(sim_params.items()) # every simulator configuration will be run multiple times with different randomness seeds sim_params = _add_seeds_to_sim_params(n_seeds, sim_params) self.observations = observations self.n_test_samples = n_test_samples self.keys_of_interest = keys_of_interest self.exp_prefix = exp_prefix self.use_gpu = use_gpu logger.configure(log_directory=config.DATA_DIR, prefix=exp_prefix, color='green') ''' ---------- Either load or generate the configs ----------''' config_pkl_path = os.path.join(logger.log_directory, logger.prefix, EXP_CONFIG_FILE) if os.path.isfile(config_pkl_path): logger.log("{:<70s} {:<30s}".format("Loading experiment previous configs from file: ", config_pkl_path)) self.configs = logger.load_pkl(EXP_CONFIG_FILE) else: logger.log("{:<70s} {:<30s}".format("Generating and storing experiment configs under: ", config_pkl_path)) self.configs = self._generate_configuration_variants(est_params, sim_params) logger.dump_pkl(data=self.configs, path=EXP_CONFIG_FILE) ''' ---------- Either load already existing results or start a new result collection ---------- ''' results_pkl_path = os.path.join(logger.log_directory, logger.prefix, RESULTS_FILE) if os.path.isfile(results_pkl_path): logger.log_line("{:<70s} {:<30s}".format("Continue with: ", results_pkl_path)) self.gof_single_res_collection = dict(logger.load_pkl_log(RESULTS_FILE)) else: # start from scratch self.gof_single_res_collection = {} self.gof_results = GoodnessOfFitResults(self.gof_single_res_collection)
Example #30
Source File: revgrad.py From pytorch-domain-adaptation with MIT License | 4 votes |
def main(args): model = Net().to(device) model.load_state_dict(torch.load(args.MODEL_FILE)) feature_extractor = model.feature_extractor clf = model.classifier discriminator = nn.Sequential( GradientReversal(), nn.Linear(320, 50), nn.ReLU(), nn.Linear(50, 20), nn.ReLU(), nn.Linear(20, 1) ).to(device) half_batch = args.batch_size // 2 source_dataset = MNIST(config.DATA_DIR/'mnist', train=True, download=True, transform=Compose([GrayscaleToRgb(), ToTensor()])) source_loader = DataLoader(source_dataset, batch_size=half_batch, shuffle=True, num_workers=1, pin_memory=True) target_dataset = MNISTM(train=False) target_loader = DataLoader(target_dataset, batch_size=half_batch, shuffle=True, num_workers=1, pin_memory=True) optim = torch.optim.Adam(list(discriminator.parameters()) + list(model.parameters())) for epoch in range(1, args.epochs+1): batches = zip(source_loader, target_loader) n_batches = min(len(source_loader), len(target_loader)) total_domain_loss = total_label_accuracy = 0 for (source_x, source_labels), (target_x, _) in tqdm(batches, leave=False, total=n_batches): x = torch.cat([source_x, target_x]) x = x.to(device) domain_y = torch.cat([torch.ones(source_x.shape[0]), torch.zeros(target_x.shape[0])]) domain_y = domain_y.to(device) label_y = source_labels.to(device) features = feature_extractor(x).view(x.shape[0], -1) domain_preds = discriminator(features).squeeze() label_preds = clf(features[:source_x.shape[0]]) domain_loss = F.binary_cross_entropy_with_logits(domain_preds, domain_y) label_loss = F.cross_entropy(label_preds, label_y) loss = domain_loss + label_loss optim.zero_grad() loss.backward() optim.step() total_domain_loss += domain_loss.item() total_label_accuracy += (label_preds.max(1)[1] == label_y).float().mean().item() mean_loss = total_domain_loss / n_batches mean_accuracy = total_label_accuracy / n_batches tqdm.write(f'EPOCH {epoch:03d}: domain_loss={mean_loss:.4f}, ' f'source_accuracy={mean_accuracy:.4f}') torch.save(model.state_dict(), 'trained_models/revgrad.pt')