Python config.BATCH_SIZE Examples

The following are 22 code examples of config.BATCH_SIZE(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module config , or try the search function .
Example #1
Source File: datalayer.py    From tripletloss with MIT License 6 votes vote down vote up
def setup(self, bottom, top):
        """Setup the RoIDataLayer."""
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)    
        self._batch_size = config.BATCH_SIZE
        self._triplet = self._batch_size/3
        assert self._batch_size % 3 == 0
        self._name_to_top_map = {
            'data': 0,
            'labels': 1}

        self.data_container =  sampledata() 
        self._index = 0

        # data blob: holds a batch of N images, each with 3 channels
        # The height and width (100 x 100) are dummy values
        top[0].reshape(self._batch_size, 3, 224, 224)

        top[1].reshape(self._batch_size) 
Example #2
Source File: data_layer.py    From triplet with MIT License 6 votes vote down vote up
def setup(self, bottom, top):
        """Setup the DataLayer."""

        if cfg.TRIPLET_LOSS:
            self.batch_size = cfg.TRIPLET_BATCH_SIZE
        else:
            self.batch_size = cfg.BATCH_SIZE
        self._name_to_top_map = {
            'data': 0,
            'labels': 1}

        self._index = 0
        self._epoch = 1

        # data blob: holds a batch of N images, each with 3 channels
        # The height and width (100 x 100) are dummy values
        top[0].reshape(self.batch_size, 3, 224, 224)

        top[1].reshape(self.batch_size) 
Example #3
Source File: TF_flowers.py    From tensorflow_yolo2 with MIT License 6 votes vote down vote up
def __init__(self, val_split, rebuild=False, data_aug=False):
        self.name = 'TF_flowers'
        self.devkit_path = cfg.FLOWERS_PATH
        self.data_path = self.devkit_path
        self.cache_path = cfg.CACHE_PATH
        self.batch_size = cfg.BATCH_SIZE
        self.image_size = cfg.IMAGE_SIZE
        self.rebuild = rebuild
        self.data_aug = data_aug
        self.num_class = 5
        self.classes = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
        self.class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_class)))))
        self.train_cursor = 0
        self.val_cursor = 0
        self.epoch = 1
        self.gt_labels = None
        self.val_split = val_split
        assert os.path.exists(self.devkit_path), \
            'TF_flowers path does not exist: {}'.format(self.devkit_path)
        assert os.path.exists(self.data_path), \
            'Path does not exist: {}'.format(self.data_path)
        self.prepare() 
Example #4
Source File: ilsvrc2017_cls.py    From tensorflow_yolo2 with MIT License 6 votes vote down vote up
def __init__(self, image_set, rebuild=False, data_aug=True):
        self.name = 'ilsvrc_2017'
        self.devkit_path = cfg.ILSVRC_PATH
        self.data_path = self.devkit_path
        self.cache_path = cfg.CACHE_PATH
        self.batch_size = cfg.BATCH_SIZE
        self.image_size = cfg.IMAGE_SIZE
        self.image_set = image_set
        self.rebuild = rebuild
        self.data_aug = data_aug
        self.cursor = 0
        self.load_classes()
        # self.gt_labels = None
        assert os.path.exists(self.devkit_path), \
            'VOCdevkit path does not exist: {}'.format(self.devkit_path)
        assert os.path.exists(self.data_path), \
            'Path does not exist: {}'.format(self.data_path)
        self.prepare() 
Example #5
Source File: data.py    From PINTO_model_zoo with MIT License 6 votes vote down vote up
def __init__(self):
        """
        需始终记住:
        small_detector对应下标索引0, medium_detector对应下标索引1,big_detector对应下标索引2
        :param dataset_type: 选择加载训练样本或测试样本,必须是'train' or 'test'
        """
        self.__dataset_path = cfg.DATASET_PATH
        self.__train_input_sizes = cfg.TRAIN_INPUT_SIZES
        self.__strides = np.array(cfg.STRIDES)
        self.__batch_size = cfg.BATCH_SIZE
        self.__classes = cfg.CLASSES
        self.__num_classes = len(self.__classes)
        self.__gt_per_grid = cfg.GT_PER_GRID
        self.__class_to_ind = dict(zip(self.__classes, range(self.__num_classes)))

        annotations_2007 = self.__load_annotations(os.path.join(self.__dataset_path, '2007_trainval'))
        annotations_2012 = self.__load_annotations(os.path.join(self.__dataset_path, '2012_trainval'))
        self.__annotations = annotations_2007 + annotations_2012
        self.__num_samples = len(self.__annotations)
        logging.info(('The number of image for train is:').ljust(50) + str(self.__num_samples))
        self.__num_batchs = np.ceil(self.__num_samples / self.__batch_size)
        self.__batch_count = 0 
Example #6
Source File: Train.py    From LeNet with MIT License 6 votes vote down vote up
def main():
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    sess = tf.Session()
    batch_size = cfg.BATCH_SIZE
    parameter_path = cfg.PARAMETER_FILE
    lenet = Lenet()
    max_iter = cfg.MAX_ITER


    saver = tf.train.Saver()
    if os.path.exists(parameter_path):
        saver.restore(parameter_path)
    else:
        sess.run(tf.initialize_all_variables())

    for i in range(max_iter):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy = sess.run(lenet.train_accuracy,feed_dict={
                lenet.raw_input_image: batch[0],lenet.raw_input_label: batch[1]
            })
            print("step %d, training accuracy %g" % (i, train_accuracy))
        sess.run(lenet.train_op,feed_dict={lenet.raw_input_image: batch[0],lenet.raw_input_label: batch[1]})
    save_path = saver.save(sess, parameter_path) 
Example #7
Source File: chatbot.py    From stanford-tensorflow-tutorials with MIT License 5 votes vote down vote up
def train():
    """ Train the bot """
    test_buckets, data_buckets, train_buckets_scale = _get_buckets()
    # in train mode, we need to create the backward path, so forwrad_only is False
    model = ChatBotModel(False, config.BATCH_SIZE)
    model.build_graph()

    saver = tf.train.Saver()

    with tf.Session() as sess:
        print('Running session')
        sess.run(tf.global_variables_initializer())
        _check_restore_parameters(sess, saver)

        iteration = model.global_step.eval()
        total_loss = 0
        while True:
            skip_step = _get_skip_step(iteration)
            bucket_id = _get_random_bucket(train_buckets_scale)
            encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(data_buckets[bucket_id], 
                                                                           bucket_id,
                                                                           batch_size=config.BATCH_SIZE)
            start = time.time()
            _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, decoder_masks, bucket_id, False)
            total_loss += step_loss
            iteration += 1

            if iteration % skip_step == 0:
                print('Iter {}: loss {}, time {}'.format(iteration, total_loss/skip_step, time.time() - start))
                start = time.time()
                total_loss = 0
                saver.save(sess, os.path.join(config.CPT_PATH, 'chatbot'), global_step=model.global_step)
                if iteration % (10 * skip_step) == 0:
                    # Run evals on development set and print their loss
                    _eval_test_set(sess, model, test_buckets)
                    start = time.time()
                sys.stdout.flush() 
Example #8
Source File: tripletselectlayer.py    From tripletloss with MIT License 5 votes vote down vote up
def setup(self, bottom, top):
        """Setup the TripletSelectLayer."""
        self.triplet = config.BATCH_SIZE/3
        top[0].reshape(self.triplet,shape(bottom[0].data)[1])
        top[1].reshape(self.triplet,shape(bottom[0].data)[1])
        top[2].reshape(self.triplet,shape(bottom[0].data)[1]) 
Example #9
Source File: chatbot.py    From stanford-tensorflow-tutorials with MIT License 5 votes vote down vote up
def _eval_test_set(sess, model, test_buckets):
    """ Evaluate on the test set. """
    for bucket_id in range(len(config.BUCKETS)):
        if len(test_buckets[bucket_id]) == 0:
            print("  Test: empty bucket %d" % (bucket_id))
            continue
        start = time.time()
        encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(test_buckets[bucket_id], 
                                                                        bucket_id,
                                                                        batch_size=config.BATCH_SIZE)
        _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, 
                                   decoder_masks, bucket_id, True)
        print('Test bucket {}: loss {}, time {}'.format(bucket_id, step_loss, time.time() - start)) 
Example #10
Source File: chatbot.py    From stanford-tensorflow-tutorials with MIT License 5 votes vote down vote up
def train():
    """ Train the bot """
    test_buckets, data_buckets, train_buckets_scale = _get_buckets()
    # in train mode, we need to create the backward path, so forwrad_only is False
    model = ChatBotModel(False, config.BATCH_SIZE)
    model.build_graph()

    saver = tf.train.Saver()

    with tf.Session() as sess:
        print('Running session')
        sess.run(tf.global_variables_initializer())
        _check_restore_parameters(sess, saver)

        iteration = model.global_step.eval()
        total_loss = 0
        while True:
            skip_step = _get_skip_step(iteration)
            bucket_id = _get_random_bucket(train_buckets_scale)
            encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(data_buckets[bucket_id], 
                                                                           bucket_id,
                                                                           batch_size=config.BATCH_SIZE)
            start = time.time()
            _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, decoder_masks, bucket_id, False)
            total_loss += step_loss
            iteration += 1

            if iteration % skip_step == 0:
                print('Iter {}: loss {}, time {}'.format(iteration, total_loss/skip_step, time.time() - start))
                start = time.time()
                total_loss = 0
                saver.save(sess, os.path.join(config.CPT_PATH, 'chatbot'), global_step=model.global_step)
                if iteration % (10 * skip_step) == 0:
                    # Run evals on development set and print their loss
                    _eval_test_set(sess, model, test_buckets)
                    start = time.time()
                sys.stdout.flush() 
Example #11
Source File: chatbot.py    From stanford-tensorflow-tutorials with MIT License 5 votes vote down vote up
def _eval_test_set(sess, model, test_buckets):
    """ Evaluate on the test set. """
    for bucket_id in range(len(config.BUCKETS)):
        if len(test_buckets[bucket_id]) == 0:
            print("  Test: empty bucket %d" % (bucket_id))
            continue
        start = time.time()
        encoder_inputs, decoder_inputs, decoder_masks = data.get_batch(test_buckets[bucket_id], 
                                                                        bucket_id,
                                                                        batch_size=config.BATCH_SIZE)
        _, step_loss, _ = run_step(sess, model, encoder_inputs, decoder_inputs, 
                                   decoder_masks, bucket_id, True)
        print('Test bucket {}: loss {}, time {}'.format(bucket_id, step_loss, time.time() - start)) 
Example #12
Source File: model.py    From MAX-Sports-Video-Classifier with Apache License 2.0 5 votes vote down vote up
def process_frames(dirname, means, batch_size=BATCH_SIZE, num_frames_per_clip=NUM_FRAMES_PER_CLIP, crop_size=CROP_SIZE):
    tmp_data, _ = get_frames_data(dirname, num_frames_per_clip)
    img_datas = []
    data = []

    if len(tmp_data) != 0:
        for j in xrange(len(tmp_data)):
            img = Image.fromarray(tmp_data[j].astype(np.uint8))
            if img.width > img.height:
                scale = float(crop_size) / float(img.height)
                img = np.array(cv2.resize(np.array(img), (int(img.width * scale + 1), crop_size))).astype(np.float32)
            else:
                scale = float(crop_size) / float(img.width)
                img = np.array(cv2.resize(np.array(img), (crop_size, int(img.height * scale + 1)))).astype(np.float32)
            crop_x = int((img.shape[0] - crop_size) / 2)
            crop_y = int((img.shape[1] - crop_size) / 2)
            img = img[crop_x:crop_x + crop_size, crop_y:crop_y + crop_size, :] - means[j]
            img_datas.append(img)
        data.append(img_datas)

    # pad (duplicate) data/label if less than batch_size
    valid_len = len(data)
    pad_len = batch_size - valid_len
    if pad_len:
        for i in range(pad_len):
            data.append(img_datas)

    np_arr_data = np.array(data).astype(np.float32)
    return np_arr_data 
Example #13
Source File: utils.py    From CapsNet with MIT License 5 votes vote down vote up
def get_iterator(mode):
    dataset = MNIST(root='./data', train=mode, download=True)
    data = getattr(dataset, 'train_data' if mode else 'test_data')
    labels = getattr(dataset, 'train_labels' if mode else 'test_labels')
    tensor_dataset = tnt.dataset.TensorDataset([data, labels])

    return tensor_dataset.parallel(batch_size=config.BATCH_SIZE, num_workers=4, shuffle=mode) 
Example #14
Source File: main.py    From CapsNet with MIT License 5 votes vote down vote up
def on_end_epoch(state):
    print('[Epoch %d] Training Loss: %.4f (Accuracy: %.2f%%)' % (
        state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))

    train_loss_logger.log(state['epoch'], meter_loss.value()[0])
    train_accuracy_logger.log(state['epoch'], meter_accuracy.value()[0])

    reset_meters()

    engine.test(processor, utils.get_iterator(False))
    test_loss_logger.log(state['epoch'], meter_loss.value()[0])
    test_accuracy_logger.log(state['epoch'], meter_accuracy.value()[0])
    confusion_logger.log(confusion_meter.value())

    print('[Epoch %d] Testing Loss: %.4f (Accuracy: %.2f%%)' % (
        state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))

    torch.save(model.state_dict(), 'epochs/epoch_%d.pt' % state['epoch'])

    # reconstruction visualization

    test_sample = next(iter(utils.get_iterator(False)))

    ground_truth = (test_sample[0].unsqueeze(1).float() / 255.0)
    if torch.cuda.is_available():
        _, reconstructions = model(Variable(ground_truth).cuda())
    else:
        _, reconstructions = model(Variable(ground_truth))
    reconstruction = reconstructions.cpu().view_as(ground_truth).data

    ground_truth_logger.log(
        make_grid(ground_truth, nrow=int(config.BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy())
    reconstruction_logger.log(
        make_grid(reconstruction, nrow=int(config.BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy()) 
Example #15
Source File: ilsvrc_cls_multithread_scipy.py    From tensorflow_yolo2 with MIT License 5 votes vote down vote up
def __init__(self, image_set, rebuild=False,
                 multithread=False, batch_size=cfg.BATCH_SIZE,
                 image_size = cfg.IMAGE_SIZE, random_noise=False):
        self.name = 'ilsvrc_2017_cls'
        self.devkit_path = cfg.ILSVRC_PATH
        self.data_path = self.devkit_path
        self.cache_path = cfg.CACHE_PATH
        self.batch_size = batch_size
        self.image_size = image_size
        self.image_set = image_set
        self.rebuild = rebuild
        self.multithread = multithread
        self.random_noise = random_noise
        self.load_classes()
        self.cursor = 0
        self.epoch = 1
        self.gt_labels = None
        assert os.path.exists(self.devkit_path), \
            'ILSVRC path does not exist: {}'.format(self.devkit_path)
        assert os.path.exists(self.data_path), \
            'Path does not exist: {}'.format(self.data_path)
        self.prepare()

        if self.multithread:
            self.prepare_multithread()
            self.get = self._get_multithread
        else:
            self.get = self._get 
Example #16
Source File: pascal_voc.py    From tensorflow_yolo2 with MIT License 5 votes vote down vote up
def __init__(self, image_set, batch_size=cfg.BATCH_SIZE, rebuild=False):
        self.name = 'voc_2007'
        self.devkit_path = cfg.PASCAL_PATH
        self.data_path = os.path.join(self.devkit_path, 'VOC2007')
        self.cache_path = cfg.CACHE_PATH
        self.batch_size = batch_size
        self.image_size = cfg.IMAGE_SIZE
        self.cell_size = cfg.S
        self.classes = ('aeroplane', 'bicycle', 'bird', 'boat',
                        'bottle', 'bus', 'car', 'cat', 'chair',
                        'cow', 'diningtable', 'dog', 'horse',
                        'motorbike', 'person', 'pottedplant',
                        'sheep', 'sofa', 'train', 'tvmonitor')
        self.num_class = len(self.classes)
        self.class_to_ind = dict(
            list(zip(self.classes, list(range(self.num_class)))))
        self.flipped = cfg.FLIPPED
        self.image_set = image_set
        self.rebuild = rebuild
        self.cursor = 0
        self.gt_labels = None
        assert os.path.exists(self.devkit_path), \
            'VOCdevkit path does not exist: {}'.format(self.devkit_path)
        assert os.path.exists(self.data_path), \
            'Path does not exist: {}'.format(self.data_path)
        self.prepare() 
Example #17
Source File: ilsvrc2017_cls_multithread.py    From tensorflow_yolo2 with MIT License 5 votes vote down vote up
def __init__(self, image_set, rebuild=False, data_aug=False,
                 multithread=False, batch_size=cfg.BATCH_SIZE,
                 image_size = cfg.IMAGE_SIZE, RGB=False):
        self.name = 'ilsvrc_2017_cls'
        self.devkit_path = cfg.ILSVRC_PATH
        self.data_path = self.devkit_path
        self.cache_path = cfg.CACHE_PATH
        self.batch_size = batch_size
        self.image_size = image_size
        self.image_set = image_set
        self.rebuild = rebuild
        self.multithread = multithread
        self.data_aug = data_aug
        self.RGB = RGB
        self.load_classes()
        self.cursor = 0
        self.epoch = 1
        self.gt_labels = None
        assert os.path.exists(self.devkit_path), \
            'ILSVRC path does not exist: {}'.format(self.devkit_path)
        assert os.path.exists(self.data_path), \
            'Path does not exist: {}'.format(self.data_path)
        self.prepare()

        if self.multithread:
            self.prepare_multithread()
            self.get = self._get_multithread
        else:
            self.get = self._get 
Example #18
Source File: model_rpointnet.py    From GSPN with MIT License 5 votes vote down vote up
def placeholder_inputs(config):
    pc_pl = tf.placeholder(tf.float32, shape=(config.BATCH_SIZE, config.NUM_POINT, 3))
    color_pl = tf.placeholder(tf.float32, shape=(config.BATCH_SIZE, config.NUM_POINT, 3))
    pc_ins_pl = tf.placeholder(tf.float32, shape=(config.BATCH_SIZE, config.NUM_GROUP, config.NUM_POINT_INS, 3))
    group_label_pl = tf.placeholder(tf.int32, shape=(config.BATCH_SIZE, config.NUM_POINT))
    group_indicator_pl = tf.placeholder(tf.int32, shape=(config.BATCH_SIZE, config.NUM_GROUP))
    seg_label_pl = tf.placeholder(tf.int32, shape=(config.BATCH_SIZE, config.NUM_POINT))
    bbox_ins_pl = tf.placeholder(tf.float32, shape=(config.BATCH_SIZE, config.NUM_GROUP, 6))
    return pc_pl, color_pl, pc_ins_pl, group_label_pl, group_indicator_pl, seg_label_pl, bbox_ins_pl 
Example #19
Source File: prepare_data.py    From TensorFlow2.0_ResNet with MIT License 5 votes vote down vote up
def generate_datasets():
    train_dataset, train_count = get_dataset(dataset_root_dir=config.train_dir)
    valid_dataset, valid_count = get_dataset(dataset_root_dir=config.valid_dir)
    test_dataset, test_count = get_dataset(dataset_root_dir=config.test_dir)


    # read the original_dataset in the form of batch
    train_dataset = train_dataset.shuffle(buffer_size=train_count).batch(batch_size=config.BATCH_SIZE)
    valid_dataset = valid_dataset.batch(batch_size=config.BATCH_SIZE)
    test_dataset = test_dataset.batch(batch_size=config.BATCH_SIZE)

    return train_dataset, valid_dataset, test_dataset, train_count, valid_count, test_count 
Example #20
Source File: batch_generator.py    From BirdCLEF-Baseline with MIT License 5 votes vote down vote up
def getNextImageBatch(split, augmentation=True): 

    #fill batch
    for chunk in getDatasetChunk(split):

        #allocate numpy arrays for image data and targets
        x_b = np.zeros((cfg.BATCH_SIZE, cfg.IM_DIM, cfg.IM_SIZE[1], cfg.IM_SIZE[0]), dtype='float32')
        y_b = np.zeros((cfg.BATCH_SIZE, len(cfg.CLASSES)), dtype='float32')
        
        ib = 0
        for sample in chunk:

            try:
            
                #load image data and class label from path
                x, y = loadImageAndTarget(sample, augmentation)

                #pack into batch array
                x_b[ib] = x
                y_b[ib] = y
                ib += 1

            except:
                continue

        #trim to actual size
        x_b = x_b[:ib]
        y_b = y_b[:ib]

        #instead of return, we use yield
        yield x_b, y_b

#Loading images with CPU background threads during GPU forward passes saves a lot of time
#Credit: J. Schlüter (https://github.com/Lasagne/Lasagne/issues/12) 
Example #21
Source File: batch_generator.py    From BirdCLEF-Baseline with MIT License 5 votes vote down vote up
def getDatasetChunk(split):

    #get batch-sized chunks of image paths
    for i in xrange(0, len(split), cfg.BATCH_SIZE):
        yield split[i:i+cfg.BATCH_SIZE] 
Example #22
Source File: stats.py    From BirdCLEF-Baseline with MIT License 5 votes vote down vote up
def showProgress(epoch, done=False):

    global last_update

    # First call?
    if not 'batch_count' in cfg.STATS:
        bcnt = 0
    else:
        bcnt = cfg.STATS['batch_count']

    # Calculate number of batches to train
    total_batches = cfg.STATS['sample_count'] // cfg.BATCH_SIZE + 1

    # Current progess
    if not done:
        if bcnt == 0:
            log.p(('EPOCH', epoch, '['), new_line=False)
        else:
            p = bcnt * 100 / total_batches
            if not p % 5 and not p == last_update:
                log.p('=', new_line=False)
                last_update = p
    else:
        log.p(']', new_line=False)

# Clear on first load